

BeagleBone Robotic Projects

Create complex and exciting robotic projects with
the BeagleBone Black

Richard Grimmett

BIRMINGHAM - MUMBAI

BeagleBone Robotic Projects

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1181213

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78355-932-9

www.packtpub.com

Cover Image by Disha Haria (dishah@packtpub.com)

Credits

Author
Richard Grimmett

Reviewers
Álvaro García Gómez

Lihang Li

Derek Molloy

Acquisition Editor
Sam Birch

Lead Technical Editor
Chalini Snega Victor

Technical Editors
Jalasha D'costa

Monica John

Edwin Moses

Nikhil Potdukhe

Siddhi Rane

Sonali S. Vernekar

Project Coordinator
Leena Purkait

Proofreader
Chris Smith

Indexer
Tejal Soni

Graphics
Sheetal Aute

Abhinash Sahu

Production Coordinators
Alwin Roy

Kirtee Shingan

Cover Work
Kirtee Shingan

About the Author

Richard Grimmett has always been fascinated by computers and electronics
from his very first programming project that used Fortran on punch cards. He has
a Bachelor's and Master's degree in Electrical Engineering and a PhD in Leadership
Studies. He also has 26 years of experience in the Radar and Telecommunications
industries, and even has one of the original brick phones. He now teaches Computer
Science and Electrical Engineering at Brigham Young University - Idaho where his
office is filled with many of his robotics projects.

I would certainly like to thank my wife and family for providing me
the time and wonderful, supportive environment that encourages
me to take on projects such as this one. I would also like to thank
my students; they always amaze and inspire me with their creativity
when released from the boredom of standard educational practices.

About the Reviewers

Álvaro García Gómez is a computer engineer at the University of Valladolid
(Spain) and a technical administrator of IT systems. He was focused on software
development, but a short time later robotics and embedded devices aroused his
curiosity. Now he is specialized in machine learning and autonomous robotics,
which involve his two passions: computing and electronics. Now he is working in
his own company that develops free software and hardware.

Lihang Li received his B.E. degree in Mechanical Engineering from Huazhong
University of Science and Technology (HUST), China in 2012 and is now pursuing
his M.S. degree in Computer Vision at National Laboratory of Pattern Recognition
(NLPR) from the Institute of Automation, Chinese Academy of Sciences (IACAS).

He is a member of Dian Group from HUST and mainly concentrated on Embedded
System Development when he was an undergraduate. He is familiar with Embedded
Linux, ARM, DSP, and various communication interfaces (I2C, SPI, UART, CAN,
and ZigBee, among others). He took part in a competition called The Asia-Pacific
Robot Contest (ABU Robocon) with his team in 2012 and secured third place among
29 teams in China.

As a graduate student, he is focusing on Computer Vision and specially on SLAM
algorithms. In his free time, he likes to take part in Open Source Activities and now
is President of the Open Source Club, Chinese Academy of Sciences. Also, building a
multicopter is his hobby and he is with a team called OpenDrone from Beijing Linux
User Group (BLUG).

His interest includes: Linux, Open Source, Cloud Computing, Virtualization,
Computer Vision algorithms, Machine Learning and Data Mining, and various
programming languages.

You can find him at his personal website, http://hustcalm.me.

Many thanks to my girlfriend Jingjing Shao; it was her
encouragement to push me to be a reviewer for this book. And I
appreciate her kindness though sometimes I can't spare time for her.
Also, I must thank all the team: Leena, who is a very good Project
Coordinator, and the other reviewers, though we haven't met, I'm
happy to work with you.

Derek Molloy is a senior lecturer in the School of Electronic Engineering, Faculty
of Engineering & Computing at Dublin City University, Ireland. Since 1997, he
has lectured in object-oriented programming, 3D Computer Graphics, and Digital
Electronics at postgraduate and undergraduate levels. His research interests are
in the fields of Computer & Machine Vision, 3D Graphics and Visualization, and
e-learning. He is a key academic member of the Centre for Image Processing and
Analysis (CIPA) at DCU. He has published his works widely in international
journals and conferences, including an important textbook, Machine Vision Algorithms
in Java, Springer (2001). In his spare time he runs the DerekMolloyDCU YouTube
channel that contains many instructional videos on the use of the BeagleBone, and he
integrates everything on his personal blog at www.derekmolloy.ie.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface	 1

Chapter 1: Getting Started with the BeagleBone Black	 9
Mission briefing	 9
The unveiling!	 11
Hooking up a keyboard, mouse, and display	 15
Changing the operating system	 18
Adding a graphical user interface	 22
Accessing the board remotely	 26
Mission accomplished	 34
A challenge	 34

Chapter 2: Programming the BeagleBone Black	 35
Mission briefing	 35
Basic Linux commands and navigating the filesystem	 36
Creating, editing, and saving files on the BeagleBone Black	 42
Creating and running Python programs on the BeagleBone Black	 43
Basic programming constructs on the BeagleBone Black	 47
Introduction to the C++ programming language	 54
Mission accomplished	 59
A challenge	 59

Chapter 3: Providing Speech Input and Output	 61
Mission briefing	 61
Hooking up the HW to make and input sound	 64
Using eSpeak to allow your projects to respond in a robotic voice	 70
Using PocketSphinx to interpret your commands	 73
Providing the capability to interpret your commands
and have your robot initiate an action	 80

ii

Table of Contents

Mission accomplished	 83
A challenge	 83

Chapter 4: Allowing the BeagleBone Black to See	 85
Mission briefing	 85
Connecting the USB camera to the BeagleBone Black and viewing the images	 86
Downloading and installing OpenCV – a full-featured vision library	 89
Using the vision library to detect colored objects	 97
Mission accomplished	 102
Challenges	 102

Chapter 5: Making the Unit Mobile – Controlling Wheeled Movement	 103
Mission briefing	 103
Using a motor controller to control the speed of your platform	 107
Controlling your mobile platform programmatically using the BeagleBone Black	 117
Making your mobile platform truly mobile by issuing voice commands	 122
Mission accomplished	 124
A challenge	 124

Chapter 6: Making the Unit Very Mobile – Controlling Legged Movement	 125
Mission briefing	 125
Connecting the BeagleBone Black to the mobile platform using a servo controller	 130
Creating a program in Linux to control the mobile platform	 138
Making your mobile platform truly mobile by issuing voice commands	 142
Mission accomplished	 143
A challenge	 144

Chapter 7: Avoiding Obstacles Using Sensors	 145
Mission briefing	 145
Connecting the BeagleBone Black to a USB sonar sensor	 148
Using a servo to move a single sensor	 154
Mission accomplished	 159
A challenge	 159

Chapter 8: Going Truly Mobile – Remote Control of Your Robot	 161
Mission briefing	 161
Connecting the BeagleBone Black to a wireless USB keyboard	 167
Using the keyboard to control your project	 169
Mission accomplished	 174
A challenge	 174

Chapter 9: Using a GPS Receiver to Locate Your Robot	 175
Mission briefing	 175
Connecting the BeagleBone Black to a GPS device	 176
Accessing the GPS programmatically and determining

iii

Table of Contents

how to move to a location	 188
Mission accomplished	 193
A challenge	 193

Chapter 10: System Dynamics	 195
Mission briefing	 195
Creating a general control structure so capabilities can communicate 	 197
Mission accomplished	 205
A challenge	 206

Chapter 11: By Land, Sea, and Air	 207
Mission briefing	 207
Using the BeagleBone Black in sailing robots	 208
Using the BeagleBone Black in flying robots	 216
Using the BeagleBone Black in submarine robots	 222
Mission accomplished	 224
A challenge	 224

Index	 225

Preface

We live in an amazing age. We are mostly aware of how amazing it is as we live in an age
where major changes to how we live occur well within a lifetime, sometimes within a few
years. Nowhere is this more evident than in the general area of technology, and the specific
area of computers. Not so many years ago, certainly within the lifespan of most of the
baby-boomer generation, computers were distant machines kept in the backrooms of large
corporations or universities. Access to them was tightly controlled. If you wanted to program
them, you punched your computer cards, fed them into the card reader, and then, after an
hour or so of wait, you went to receive your computer printout. This was, I regret to reveal,
part of my first experience with a computer.

These large computers were the domain of companies such as IBM, with their model 360,
Digital Equipment, with the Model PDP-7, and Hewlett-Packard, with the Model 1000. These
computers cost many thousands of dollars, and were rarely seen except by a privileged few,
who had access to climate-controlled computer rooms.

This model fit the world just wonderfully for many years, until the advent of the personal
computer. I was lucky to know someone who purchased one of the very first IBM-PCs. It had
two floppies, a monochrome monitor, and was an amazing piece of equipment. Suddenly
the world changed and the technology that had seemed so remote was now available on the
desktop. This same technological revolution in processing power also birthed a new breed of
dedicated microprocessors. These could be used for specific tasks that had previously been
the realm of analog circuitry or, in many cases, human interaction with mechanical systems.

These processing solutions to specific applications are named embedded systems. They take
the digital calculating capability of personal computers and shrink them even further so they
can be placed in common household and industrial objects. Embedded technology has also
evolved with respect to price; fortunate, for few would be willing to pay several thousand
dollars for a door lock or temperature sensor. The initial embedded devices were very limited
in their technology, and developing applications with them became quite a challenge. It was
very common to run out of either computing horsepower or memory. Many nights were
spent by the talented few shoehorning the last features into the last few bytes of memory.

Preface

2

The computer age has spawned an amazing array of technical advances in both the hardware
and software areas. Companies such as Intel and AMD have created processors with almost
unfathomable computing power and more available memory that once thought possible,
and both Microsoft and Apple have provided major advances in the area of software
functionality and usability. The personal computer has become a standard tool in most
households, schools, businesses, and factories.

As the personal computer has gone, so has the embedded systems world. From what were
once four bit, special purpose processors with 2000 bytes of memory, now embedded
processors have emerged that rival the performance and capability of standard personal
computers. One has to look no further than the cell phone for an example of significant
computing capability in very small packages, and at very inexpensive prices.

This has all reached a bit of a crescendo with the introduction of small, inexpensive systems
that can not only run simple, focused applications, but have the capability of powering
almost any type of computing need we can create. At the same time these small but
powerful systems have outgrown the small, single purpose development environments as
well. They are now paired with powerful operating systems, and provide personal computer-
like functionality in very small packages. The overwhelming advance of tablets and smart
phones has begun to take over the face of computing for many applications.

These advances have also affected the embedded area as well. Small, highly capable systems
have married very inexpensive hardware with free, open source software to provide a
platform for almost anyone to explore the embedded world. The Arduino, the Raspberry
Pi, and now the BeagleBone Black are all platforms that offer not only an affordable price
point, but also an open source software community that provides free capability and an easy
way to interact with others to get answers to questions or exchange ideas. With these new
capabilities, as we shall see later in the book, the sky is literally the limit.

This book will focus on just one of these processors, the BeagleBone Black. However, much
of what is written here could be applied to other choices with some limited modifications.
But this is not what you came here to learn. You came to learn how to build some very
interesting, complex, amazing robotics projects. And processors such as the BeagleBone
Black are impressive because they have the capability to not only make this possible, but to
make it accessible to those outside of academic or research communities. In this book, we'll
explore these capabilities, and build some very impressive projects.

Just a few comments on how the book is laid out. We'll start with a very basic introduction
to the BeagleBone Black, and how to get the hardware and software up and working. Then,
we'll build some basic functionality on top of the basic system, showing you how to add
sound, vision, and control.

Then we'll tackle some fairly complex capability, including GPS, audio, and some advanced
sensors. Finally, we'll wrap it up by showing you how to put an entire system together with
some tools that can make that a bit less complicated.

Preface

3

In each chapter, I'll give you some very specific instructions for how to proceed. This is a
bit dangerous, and the instructions are all going to be subject to change. Hopefully you'll
understand the basics of what we are trying to accomplish, so if things don't go quite to
plan, you'll be able to figure out how to proceed. There is a lot of help out there, between
message boards and blogs, so don't be shy.

What is critical to remember is that this is not an academic exercise. Don't just read the
book, but do something with the hardware. My hope is that by the end, you'll be building
the kinds of machines that will lead us all into the 22nd century. I often tell my students that
their children will grow up as comfortable with robots as they are with computers.

So, let's begin!

What this book covers
Chapter 1, Getting Started with the BeagleBone Black, will provide instructions for initial
power-up of your hardware.

Chapter 2, Programming the BeagleBone Black, will give you a brief tutorial so that you
can be successful implementing all the amazing functionality, as many of you are new to
embedded systems, Linux, Python, or perhaps even programming in general.

Chapter 3, Providing Speech Input and Output, will show you how to add speech recognition
as well as make your robot speak.

Chapter 4, Allowing the BeagleBone Black to See, will show you how to add the capability for
your robot to see.

Chapter 5, Making the Unit Mobile – Controlling Wheeled Movement, will show you how to
add wheeled movement to your robot.

Chapter 6, Making the Unit Very Mobile – Controlling Legged Movement, shows how to build
robots that have the capability to walk.

Chapter 7, Avoiding Obstacles Using Sensors, shows how to use sensors to avoid barriers as it
hardly makes sense to have mobility if your robot is going to run into obstacles.

Chapter 8, Going Truly Mobile – Remote Control of Your Robot, will show how to use a
remote device to control your robot.

Chapter 9, Using a GPS Receiver to Locate Your Robot, shows how to add a GPS device to
your robot.

Chapter 10, System Dynamics, introduces some methods for organizing all of the capabilities
so that they are available at the same time.

Preface

4

Chapter 11, By Land, Sea, and Air, introduces some interesting possibilities for embedded
projects that can fly, sail, or swim

What you need for this book
Each chapter will lead you through not only the hardware, but also the software required
for each project. However, for almost all of these projects you'll need a personal computer
connected to the Internet, an additional Internet connection and LAN cable, the BeagleBone
Black, and the power cable that comes with it.

Who this book is for
This book is designed for the informed beginner. I would hope that before beginning the
projects in this book you would be familiar with your personal computer and its basic use
and functionality. You won't need prior programming experience, but it will be helpful.
You'll be introduced to some of the most basic working of the Linux operating system, so
any familiarity there will be helpful, but not essential. More than anything the book requires
a curiosity about how robots or other embedded projects work, and the tenacity to work
through the issues associated with building your own hardware and then adding software to
get to a working system.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Mission briefing
This section explains what you will build, with a screenshot of the completed project.

Why is it awesome?
This section explains why the project is cool, unique, exciting, and interesting. It describes
what advantage the project will give you.

Preface

5

Your objectives
This section explains the major tasks required to complete your project.

ff Task 1

ff Task 2

ff Task 3

ff Task 4, and so on

Mission checklist
This section explains any pre-requisites for the project, such as resources or libraries that
need to be downloaded, and so on.

Task 1
This section explains the task that you will perform.

Prepare for lift off
This section explains any preliminary work that you may need to do before beginning work
on the task.

Engage thrusters
This section lists the steps required in order to complete the task.

Objective complete – mini debriefing
This section explains how the steps performed in the previous section allow us to complete
the task. This section is mandatory.

Classified intel
The extra information in this section is relevant to the task.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "You can do this with the ls -la /dev/sd*
command."

Preface

6

A block of code is set as follows:

#Smooth image, then convert the Hue
 cv.Smooth(img,img,cv.CV_BLUR,3)
 hue_img = cv.CreateImage(cv.GetSize(img), 8, 3)
 cv.CvtColor(img,hue_img, cv.CV_BGR2HSV)

Any command-line input or output is written as follows:

xz -cd ubuntu-precise-12.04.2-armhf-3.8.13-bone20.img.xz > /dev/sdX

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The Safe start violation tab
is set when you first enter the program; you need to clear this by clicking on the Resume
button at the bottom-left corner of the screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles
that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

7

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code and
colored images
You can download the example code files and colored images for this Packt book you have
purchased from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would
be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your errata.
Once your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with

the BeagleBone Black

Ordering the hardware (HW) is the exciting part of any project. You have wonderful dreams
of all that you might accomplish once this amazing piece of technology is delivered.
Unfortunately, the frustration of the first few attempts at accessing the capabilities of the
unit can leave many developers, especially those with little experience with this type of
dedicated system, so discouraged that the board can end up on the shelf, gathering dust next
to the pet rock and cassette tape recorder.

Mission briefing
There is rarely anything as exciting as ordering the latest new technology and anticipating
its arrival. You daydream of the projects you'll build, the amazing things you can do,
the accolades you'll receive from family, friends, and colleagues. However, reality rarely
fulfills your fantasies. This project will hopefully help you avoid the pitfalls that normally
accompany unboxing and configuring your BeagleBone Black. You'll step through the
process, answer all kinds of clarifying questions, and help you understand what is going
on. If you don't get through this project, then you'll not be successful at any of the others,
so buckle up and get ready for an exciting ride.

The most challenging aspect of accomplishing this for me as your guide is trying to decide
to what level I should describe each step. Some of you are beginners, some have limited
experience, others will know significantly more than I in some of these areas. I'll try to keep
it brief, but also try to be thorough, so that at least you'll know what steps to take in order to
be successful. I'll also try to point out some of the different ways you can get help if you are
encountering problems. So for this project, here are your objectives.

Getting Started with the BeagleBone Black

10

Your objectives
Your objectives are as follows:

ff Hooking up a keyboard, mouse, and display

ff Changing the operating system

ff Adding a graphical user interface

ff Accessing the board remotely

Downloading the example code and colored images

You can download the example code and colored images for this book you
have purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Mission checklist
Here are the items you'll need for this project:

ff A BeagleBoard Black

ff The USB cable provided with the board

ff A display with the proper video input

ff A keyboard, mouse, and powered USB hub

ff A micro SD card of at least 4 GB

ff A micro SD card reader/writer that fits your computer

ff Another computer that is connected to the Internet

ff An Internet connection for the board

Chapter 1

11

The unveiling!
The board has finally arrived. Here is what should come with the standard package:

Prepare for lift off
Before plugging anything in, inspect the board for any issues that might have occurred during
shipping. This is normally not a problem, but it is always good to do a quick visual inspection.
You should also acquaint yourself with the different connections on the board. Here they are,
labeled for your information:

Getting Started with the BeagleBone Black

12

Engage thrusters
So let's get started. You need to power the board, but you also need to hook up a way to
interact with the board and see the results of your interaction. The first thing you'll notice
is that there is no cable that fits the 5V DC connector. What's with that? Am I already hung
up without ever powering on the board? Well, fortunately no, but you do need to talk about
power for a moment. There are two ways to power the board. The first is through the USB
client connection. This is done by:

ff Connecting the micro-USB connector end of the cable to the board

ff Connecting the standard sized USB connector to either a PC or a compatible DC
power source that has such a connection

If you are going to use a DC power source, make sure the unit can supply at least one
ampere. This is not optional. Although the board might not always draw this much current, if
it senses that the unit cannot supply the required current, it will shut down.

There is another option to power the board: simply supply 5V DC to the connector. Make
sure that the plug is 5.5 x 2.1 mm (centre positive) and that the unit can supply at least one
ampere. As mentioned earlier, this is not optional.

Even if you are going to choose a DC power source for your board, initially let's connect the
board via the provided USB cable. Almost all of the different projects you work on here will
need to supply power from a battery pack anyway, and if you supply the board through the
USB port and micro-USB connector, you can use your external computer to communicate
with the board and ensure that it is up and working.

Objective complete – mini debriefing
When you plug the board in, the PWR LED, located by the 5V input, should light blue on
the board. Here is a close up of the LED locations, just so that you're certain which one to
look for:

Chapter 1

13

The other four indicators on the right-hand side of the LAN connection will eventually begin
to flash blue. The one on the far right will eventually flash as a heartbeat indicator, letting
you know that your processor is working by flashing twice quickly, approximately once
per second.

Now you can use some computer software (SW) to make sure your board is operating correctly.
When you first plug the board into a Windows PC, you'll see the indicator at the lower-right
indicating that new HW is being installed. Eventually—and this may take a bit—you'll get the
indication that your device is ready to use. If you are using Windows 7, you can view the device
in your Devices and Printers display (select this from the Start menu). You should see this:

If you see this and the farthest right LED flashing in a heartbeat fashion, you've successfully
connected your board. If you can't reach this point, see the following Classified intel section.

Getting Started with the BeagleBone Black

14

Once you've connected, you can actually communicate with your board via the USB
connection. Open a Firefox or Chrome browser and type in the address 192.168.7.2.
You should see the following in your browser:

If you've reached this point, congratulations! You are now communicating with your
BeagleBone Black as the web pages are being served by the on-board web server. You're
ready for the next step. Don't continue with directions on this page; you're going to take
a different route in updating your BeagleBone Black. If you're having problems, the folks
at beagleboard.org have a rich set of forums that can help you work through any of the
problems you might be having unpacking the board.

Classified intel
Powering the board can be a bit challenging, since the board requires at least 500 mA
of current, and many USB cables and ports are limited by design to less than 500 mA.
When attempting to power up with these cables on a power supply that cannot supply
enough current, the unit will begin to power on, the blue LEDs will begin to flash, and then
everything will turn off. This was a more significant problem with early units than the units
that are currently shipping.

Also, if you are struggling to connect to the board, you may need to download drivers. These
are available on the beagleboard.org site.

Chapter 1

15

Hooking up a keyboard, mouse, and
display

The board is now powered on, and you have blinking LEDs. You have been able to access the
basic functionality via the USB port. However, you want to do much more. This task will help
you accomplish your goals.

Prepare for lift off
Now that you know that your board works and you've verified the connection via the
provided USB cable to your computer, you're going to add the peripherals so that it can
operate as a standalone computer system. This step is a bit optional, as in the future your
projects will be in systems where you won't connect directly to the board with a keyboard,
mouse, and display. However, this can be a great learning step and in the off chance, you
need to do some debugging on the system. It is good to know how to connect directly to the
board. You'll also use this configuration to verify the basic SW installation before you start
your projects.

You'll need:

ff A USB mouse.

ff A keyboard.

ff A display device.

ff You may also need a USB hub, and if you don't have one, get a powered USB hub.
This will be important later in your project work.

Many of you will have most of this stuff already, but if you don't, there are some things to
consider before buying additional equipment. Let's start with the keyboard and mouse. Most
mice and keyboards have separate USB connectors. You'll notice, however, that on your
BeagleBone Black there is only one USB port; thus, there is a need for the USB hub.

Before deciding on the hub to connect to your board, you need to understand the difference
between a powered USB hub, and one that gets its power from the USB port itself. Almost all
USB hubs are not powered; that is, you don't plug in the USB hub separately. The reason for
this is, almost all of these hubs are hooked up to computers with very large power supplies,
and so powering USB devices from the computer is not a problem. This is not the case for your
board. The USB port on your board has very limited power capabilities, so if you are going
to hook up devices that require significant power—for instance, a WLAN adapter or Kinect
sensor—you're going to need a powered USB hub, one that provides power to the devices
through a separate power source.

Getting Started with the BeagleBone Black

16

If you already have a hub that is not powered and want to use it to connect your keyboard
and mouse, feel free, it should work fine as these do not draw too much power. If you don't
already have a keyboard and mouse, or are looking for a keyboard and mouse that you can
dedicate to your board, I suggest choosing a keyboard with a mousepad. That way you only
have one USB connection to the two devices.

To complete this step you'll also need a display. You need to investigate which display types
can be used with the BeagleBone Black. The only video output on the board is a micro-HDMI
connector. The easiest connection to create is to connect the board directly to a monitor
or TV that has an HDMI input; however, you'll probably need to buy either a cable that has
micro-HDMI on one end and regular HDMI on the other, or an adapter from micro-HDMI to
regular HDMI. HDMI monitors are relatively new, but if you have a monitor that has a DVI
input, you can buy adapters or HDMI to DVI cables relatively inexpensively that provide an
interface between DVI and HDMI. The display I use has a DVI input.

Don't be fooled, however, by adapters that claim that they go from HDMI to VGA, or HDMI
to s-video. These are two different kinds of signals: HDMI and DVI are digital standards, and
VGA and s-video are analog standards. There are adapters that can do this, but they must
contain circuitry and require power, so are significantly more expensive than any simple
adapter, and they result in a lower quality output.

Engage thrusters
Now that you have your parts, connect the USB hub to the standard USB port, the keyboard
and mouse to the USB hub, and the display to the micro-HDMI connector as shown here:

Chapter 1

17

Once these are all connected, plug in the USB hub, the display, and finally the BeagleBone
Black board. Since I am no longer going to use the USB connection to the computer, I am
using a standard USB 5 volt power supply. Make sure you connect all your devices before you
power on the unit. Most operating systems support hot-swap of devices, which means you
are able to connect a device after the system has been powered, but this is a bit shaky in the
embedded environment. You'll always cycle power when you connect a new HW.

Objective complete – mini debriefing
Once this is complete, the unit should power on; it will boot its default operating system
from the internal eMMC space, which is a sort of internal memory card and the display will
look like this:

So you should now be able to interact with your BeagleBone Black directly. This is an
important step, although for most of your projects you'll use a remote computer to program
and control your device. Keep the components you have gathered around for debug
purposes, you may need them later, as there is at least a possibility that things might go
wrong and you'll need to find out how to fix them.

Getting Started with the BeagleBone Black

18

Classified intel
Just a couple of notes about this task. First, if you have problems powering the system, check
to make sure your power supply can supply enough current. Don't even consider powering the
system with less than 1 amp. Also, if you are using a power supply with a USB connector, make
sure you use the cable that came with the unit to connect between the USB and the unit. Some
cables also limit the current, and the unit will sense this and not power on correctly.

Also, a note on connecting to the display: the board's HDMI connector is micro-HDMI, which
almost begs for an adapter. The display I chose to use is an inexpensive monitor with DVI input,
so I purchased a cable that went from standard HDMI to DVI. Then I purchased a micro-HDMI
to standard HDMI adapter. For some reason, I had problems with this configuration, and
chalked it up to a bad HDMI adapter. I now prefer a cable that has a micro-HDMI connector
on one end, and a standard HDMI connector on the other, and then a standard HDMI to DVI
adapter. This seems to be the most reliable and, if I choose, I can quickly change and use my
HDTV as the display. One of the challenges in choosing the components for your system is
trying to anticipate how it might be used in the future.

Changing the operating system
Now that you have your system all up and working, you're going to do something that seems
a bit counterintuitive; instead of using the system you've got, you're going to install a new
operating system on card so your board will boot and run this different operating system.
The reason will become clear in the next section.

Prepare for lift off
The default operating system on the internal memory is a version of Linux called Ångström.
Now Linux, unlike Windows, Android or iOS, is not tightly controlled by a single company. It is
a group effort, mostly open source, and while it is available for free, it grows and develops a bit
more chaotically.

Thus a number of "distributions" have emerged, each built on a similar kernel, or core set
of capabilities. These core capabilities are all based on the Linux specification. However,
they are packaged slightly differently, and developed, supported, and packaged by different
organizations. Ångström is one of these versions; Ubuntu is another. There are others as
well, but these are the two main choices for the distribution that you will put on your card.

Chapter 1

19

I choose to use the Ubuntu distribution of Linux on my BeagleBone Black for a couple of
reasons. First, Ubuntu is arguably the most popular distribution of Linux, which makes it a
good choice because of the community support it offers. Also, I personally like this distribution
of Linux when I need to run Linux on my own personal computer. It provides a complete set
of features, is well organized, and generally supports the latest sets of HW and SW. Having
the same version on both my personal computer and my BeagleBone Black makes it easier
for me to use both as they operate, at least to a certain degree, the same way. I can also try
some things on my computer before trying them on the BeagleBone Black. I've also found that
Ubuntu has excellent support for new HW, and this can be very important for your projects.

Others tend to favor the Ångström distribution, the support for this distribution is growing
and it can sometimes be a bit simpler to access and work with. There are also other choices,
such as Arch and there are some who are working on a distribution of Android for the
BeagleBone Black. But for this book we are going to install and run a version of Ubuntu on
your BeagleBone Black.

Engage thrusters
There are two approaches to getting Ubuntu onto your board. The board is getting popular
enough that you can buy an SD card that already has Ubuntu installed, or you can download
it onto your personal computer and then install it on the card. I'll assume you don't need any
directions if you want to purchase a card—simply do an Internet search for companies selling
such a product.

If you are going to download a distribution, you need to decide if you are going to use a
Windows computer to download and create an SD card, or a Linux machine. I'll give brief
directions for both here.

First, you'll need to download an image. This part of the process is similar for either
Windows or Linux. Open a browser window. You can go to one of the several sites that
have an image you can put on your card. My personal favorite is http://elinux.org/
Beagleboard:Ubuntu_On_BeagleBone_Black. They keep pointers to a number of
different images and directions on how to install them. My personal favorite is the 12.04
version of Ubuntu. It is new enough to support everything you need, but old enough to be
stable. Select the image and download the file.

If you're using Windows, you'll need to unzip the file using an archiving program like 7-Zip.
If you don't have this on your computer, follow the directions on the beaglebone.org Getting
Started web page. This will leave you with a file that has the .img extension, a file that can
be imaged on your card.

Getting Started with the BeagleBone Black

20

Now that you have the image, you need a program that can write the image to the card. I
use the Image Writer for Windows program. Again, if you don't have this program, follow the
directions on the beaglebone.org Getting Started web page. Plug your card into the PC, run
this program, select the correct card and image, then select Write. This will take some time,
but when completed eject the card from the PC.

If you are using Linux, you'll need to un-archive the file and then write it to the card. You can
do this all with one command. However, you do need to find the /dev device label for your
card. You can do this with the ls -la /dev/sd* command. If you run this before you plug
in your card, you might see something like this:

After plugging in your card, you might see something like this:

Notice your card is at sdb. Now go to the directory where you downloaded the archived
image file and issue the following command:

xz -cd ubuntu-precise-12.04.2-armhf-3.8.13-bone20.img.xz > /dev/sdX

where ubuntu-precise-12.04.2-armhf-3.8.13-bone20.img.xz will be replaced
with the image file that you downloaded, and /dev/sdX will be replaced with your card ID,
in this example /dev/sdb. Eject the card and you are ready to plug it into the board
and boot.

Chapter 1

21

Objective complete – mini debriefing
Make sure your BeagleBone Black is unplugged and install the micro SD card into the slot.
Then apply power. After the boot, you should get a screen that looks like this:

You can now log in to the system. You'll need to use the username and password of the
image you downloaded (unfortunately, they are not the same for all images, but you should
be able to easily find these in the same place you found your image). For my distribution the
default username is ubuntu and the password is also ubuntu. Note that the password will
not show up while you type it in. Remember this username and password, you'll need to use
it throughout the examples in this book. Entering those will bring you to this state:

You should now be logged in and ready to start issuing commands.

Classified intel
Now, two questions arise: do you need an external computer during the creation of your
projects? and what sort of computer do you need? The answer to the first question is a
resounding yes. Most of your projects are going to be self-contained robots with very limited
communication capabilities. You will be using an external computer to issue commands and
see what is going on inside your BeagleBone Black. The answer to the second is a bit more
difficult. Because you are working in Linux, most notably Ubuntu on your BeagleBone Black,
there are some advantages to having an Ubuntu system available as your remote system.
You'll be able to try some things on your computer before trying them in your embedded
system. You'll also be working with similar commands for both, which will help your
learning curve.

Getting Started with the BeagleBone Black

22

However, bulk of the personal computers today run some sort of Windows operating system,
so that is what will be normally available. You can do almost all that you need to do as far as
issuing commands and displaying information with a Windows machine, so either way will
work. I'll try to give examples for both, as long as it is practical.

There is one more choice, the choice I actually prefer. I have access to both systems on my
PC. Previously this was done by a process called dual booting, where both systems were
installed on the computer and the user chose which system they wanted to run during boot-
up. Changing systems in this kind of configuration was time consuming, however, and it used
up a lot of disk space. There is a better way.

On my Windows machine, I have a virtual Ubuntu machine running under a free program from
Oracle called VirtualBox. This program lets me run a virtual Ubuntu machine hosted by my
Windows operating system. That way I can try things in Ubuntu, yet keep all the functionality
of my Windows machine. I'm not going to explain how to install this; there is plenty of help
on the Web. Just search for Ubuntu and VirtualBox. There are several websites that offer easy,
step-by-step instructions. One of my favorites is http://www.psychocats.net/ubuntu/.

Adding a graphical user interface
You now have your Ubuntu system up and working, and you can type in commands and
see their result in the terminal window. However, you need to add some additional basic
functionality before adding all the cool capabilities that will make your robots walk, talk,
and interact. First, you need to connect to the Internet so that you can update your system
and add additional functionality. Second, in many of your projects, you will be working with
graphical programs, most notably when you connect webcams or other image sensors.

Prepare for lift off
You're going to need a graphical user interface (GUI), so let's tackle that problem.

Simply run a LAN cable from a router or switch to the BeagleBone board, plug it in the LAN
connector, and restart the BeagleBone.

Now type ifconfig at the prompt. You should get a display like the following:

Chapter 1

23

This tells you that you are connected to the Internet and have a valid Internet address. In
this case the valid address is 157.201.194.187. This address has been assigned by your
Internet router.

Generally there are two types of IP addresses that your board can be assigned:
one is called static and the other dynamic. In the static case you will always be
assigned the same address. In the dynamic case, the address may change each
time the system boots, as it asks the system for an address, which it then uses
for that session. Most systems are configured for the dynamic case; however,
if your system isn't changing, you will most likely get the same address each
time you power on and log in to the system. To learn more about DHCP, try
http://www.teracomtraining.com/tutorials/teracom-
tutorial-dynamic-IP-addresses-and-DHCP.htm.

Getting Started with the BeagleBone Black

24

Once you get here, you'll want to update your operating system. Type in sudo apt-get
update. The system will prompt you for the [sudo] password, which is the same as the
password you have already been using. Once you enter this, the system will automatically
go out and find all the updates associated with the system and applications that you have
installed. This may take a very long time, depending on how out-of-date your system
has become.

Engage thrusters
Now that you are connected to the Internet and have updated your Ubuntu system, you
need to install a graphical user interface. Ubuntu generally comes with a very full-featured
windowing system. However, it uses a good deal of memory and can interfere with the
performance you may need later. So you are going to install a "light" Windows system on top
of your Ubuntu distribution. There are several choices; I like to use Xfce. It is stable, seems
to work well, and offers a fairly complete set of capabilities while not overwhelming your
system resources. To install this, type sudo apt-get install xfce4 in the command
prompt. Again, the system will prompt you for your password and then start the install. This
install will take a significant amount of time as it is installing not only the windowing system,
but a number of packages the windowing system depends on.

Just a brief note about installing SW. You will be using apt-get to install SW throughout
this book. This is the command that Ubuntu uses to go out and find SW and then install
it on your machine. The nice thing about this is that it will also normally search and find
dependencies and download them as well. Thus not only the package you want, but the
packages that are needed for that package are installed as well. However, a bit of caution:
this is not fool-proof! You will find times when the SW you have installed will not function
because of a dependency that the system does not know about.

Objective complete – mini debriefing
Once the Xfce Windows system is installed, reboot your system by typing sudo reboot. The
system will go down and then should come back to the log-in screen. Log in, then type startx
at the prompt. After some time the Windows system will come alive. The first time you run the
system you will get Welcome to the first start of the panel and a prompt, which will ask you
which setup you want for the first setup. Choose the User default config selection.

Chapter 1

25

Then you will see the following screen:

If you see the mouse, then you are successful!

Classified intel
You're probably asking yourself why you didn't copy your image to the internal eMMC
memory card instead of just leaving your card in the system. There are two reasons, really.
The first is space. The 2 GB that are available in the eMMC is not sufficient to build many,
if not most, of the projects you're going to be working on, so you'll need a card anyway.
Second, you will find occasions where you want to start over from scratch. Using a card
makes this very easy; the eMMC process is a bit more permanent. There are several sites
that can show you how to create your Ubuntu system on the eMMC internal memory space,
but I'm not going to cover that here. Unfortunately, there are some downsides to not using
the eMMC internal memory space, the system will boot slower and you have the additional
cost of the external card, but in the long run it will be worth it.

Getting Started with the BeagleBone Black

26

Accessing the board remotely
You now have a very usable Ubuntu computer system. You can use it to access the Internet,
write riveting novels, balance your accounts—just about anything you could do with a
standard personal computer. However, that is not your purpose; you want to use your
embedded system to power your delightfully inventive projects. In most cases you won't
want to connect a keyboard, mouse, and display to your projects, as you will want to keep
your robot sizes small and maneuverable. However, you still need to communicate with your
device, program it, and have it tell you what is going on when things don't work right. You'll
spend some time on this task establishing remote access to your device.

Prepare for lift off
To complete this task you'll need to have your external PC connected to the LAN, other than
that, you are ready to go.

Engage thrusters
There are three ways you are going to access your system from your external PC:

ff The first is through a simple terminal interface using the SSH protocol.

ff The second way is using a program called vncserver, which will allow you to open
a graphical "window" on your PC that will show you what the embedded system
would be displaying on its display.

ff Finally, if you are using Microsoft Windows on your remote computer, I'll show
how you can transfer files via a program called WinScp, which is custom made for
this purpose.

So, first, make sure your basic system is up and working. Open a terminal window and
check the IP address of your unit. You're going to need this no matter how you want to
communicate with the system. You do this by issuing the ifconfig command. You should
get something that looks like this:

Chapter 1

27

You'll need that "inet address" to contact your board via the LAN connection. First, let's
configure an SSH terminal from your remote computer. An SSH terminal is a Secure Shell
Hypterminal connection, which simply means you'll be able to access your board and type
in commands at the prompt, just like you have done without the Windows system. In order
to do this, you need to have an SSH type application on your remote computer. If you are
running Microsoft Windows, you can download such an application. My personal favorite is
PuTTY. It is free and does a very good job of allowing you to save your configuration so that
you don't have to type it in each time. Type putty in a search window, and you'll soon come
to a page that supports a download, or you can go to www.putty.org.

Getting Started with the BeagleBone Black

28

Download PuTTY to your Microsoft Windows machine. Then run PuTTY by going to the
directory where it has been placed and double-clicking on the file putty.exe. You should
see a configuration window. It will look something like this:

Type the inet address from the previous page in the Host Name space and make sure the
SSH selection is highlighted. I save this configuration under BeagleBone so that I can load it
each time.

When you press Open, the system will try to open a terminal window onto your BeagleBone
Black via the LAN connection. The first time you do this, you will get a warning about an RSA
key, as the two computers don't "know" about each other, so Windows is complaining that a
computer that it doesn't know is about to be connected in a fairly intimate way. Simply select
OK, and you should get a terminal with a login prompt.

Now you can log in and issue commands to your BeagleBone Black. If you'd like to do this
from a Linux machine, the process is even simpler. Bring up a terminal window and then type
ssh ubuntu@157.201.194.187 –p 22. This will then bring you to the login screen of
your BeagleBone Black, which should look similar to the preceding screenshot.

SSH is a really useful tool to communicate with your BeagleBone Black, and I use it
extensively. However, sometimes you need a graphical look at your system, and you don't
necessarily want to connect a monitor or a small LCD display. You can get this by using an
application called vncserver. First, let's install a version of this on your BeagleBone Black
by typing sudo apt-get install tightvncserver in a terminal window on your
BeagleBone Black. This is a perfect opportunity to use SSH, by the way.

Chapter 1

29

Tightvncserver is an application that will allow you to remotely view your complete windows
system. Once you have it installed, you'll need to start the server by typing vncserver in
a terminal window on the BeagleBone black. You will then be prompted for a password as
shown in the following screenshot:

This can, and should be a different password than your password to access your BeagleBone
Black. This will be the password your remote system will send to access the vncserver
running on the board. Select a password—you don't need to set the password for the view
only capability—and then your vncserver will be running.

You'll need a VNC viewer application for your remote computer. On my Windows system
I use an application called Real VNC. When I start it up it gives me the following screen:

Getting Started with the BeagleBone Black

30

Enter the VNC Server address, which is the IP address of your BeagleBone Black, with a :1
after it, and select Connect. You will get this pop up:

Type in the password you just entered while starting the vncserver, and you should then get
a graphics view of your BeagleBone Black. Hopefully that looks like this:

Chapter 1

31

You can now access all the capabilities of your system, albeit they may be slower if you are
doing graphics-intensive data transfers. You'll see this as you work through your projects.

There are ways to make your vncserver on your BeagleBone Black start automatically
on boot. I have not used them; I choose to type the command vncserver from an SSH
application when I want the application running. This keeps your running applications to
a minimum and, more importantly, provides for fewer security risks. If you'd like to start
your vncserver each time you boot, there are several places on the Internet that will show
you how to configure this. Try http://www.havetheknowhow.com/Configure-the-
server/Run-VNC-on-boot.html. You will only have to type the password the very first
time you start vncserver—it will remember it after that. You also do not need to start Xfce
using the startx command on your BeagleBone Black for it to come up in the VNC viewer
to start its view onto the graphical interface.

Vncserver is also available via Linux.

The final piece of SW I like to use with my Windows system is a free application called WinSCP.
To download and install this piece of SW, simply search the web for WinSCP and follow the
instructions. Once installed, run the program. It will open the following dialogue box:

Getting Started with the BeagleBone Black

32

Select New, and you will get the following screen:

Here you fill in the IP address in the host name, ubuntu in the user name, and the BeagleBone
Black password (not the vncserver password) in the password space. Press log-in and you
should then see the application displayed:

Now you can drag-and-drop files from one system to the other.

Chapter 1

33

Objective complete – mini debriefing
Once you've completed this step, you can now access your system fully remotely without
connecting a display, keyboard, and mouse. Now your system will look like this:

You only need to connect the power and LAN. If you need to issue simple commands, you'll
connect via SSH. If you need a more complete set of graphical functionality, you can access
this via vncserver. Finally, if you are using a Windows system and want to transfer files back
and forth, you have access to WinScp. Now you have the toolkit you need to build your
first capabilities.

Classified intel
One of the challenges of accessing the system remotely is that you need to know the IP
address of your board. If you have the board connected to a keyboard and display, you
can always just run ifconfig to get this info. But you're going to use the board in many
applications where you don't have this information. There is a way to discover this by using
an ipscanner application. There are several available for free; simply download and use as
they instruct. They can let you know what addresses are being used, and this should then let
you find your BeagleBone Black address without typing ipconfig. From Linux you can use
an application called nmap.

Mission accomplished
Congratulations! You've completed the first stage of your journey. You have your BeagleBone
Black up and working. No gathering dust in the bin for this piece of HW. It is now ready to
start connecting to all sorts of interesting devices in all sorts of interesting ways. One thing
that is important to note: the system is not going to be nearly as stable as your PC or Mac.
The HW and SW is new, and you're going to find yourselves coming back to this project
from time to time to revive your board when it dies, because your SW has put it in some
unrecoverable state.

Generally it is difficult to physically harm the board as long as you are only using the USB
interface, so be brave, and remember, you often learn more from your failures than
your successes.

A challenge
Your system has lots of capabilities. Feel free to play with the system—try to get an
understanding of what is already there and what you'll want to add from a SW perspective.
One advanced possibility is to connect the BeagleBone Black via a wireless LAN connection, so
that you don't have to connect a HW connection when you want to communicate with it. There
are several good tutorials on the Internet. Here is a place to start, http://elinux.org/
Beagleboard:BeagleBoneBlack. If you have the desire, feel free to follow them
to see if you can get a wireless LAN connection working.

Remember, there is limited power on your USB port, so make sure you have a powered
USB hub before having a go. Usually you'll need a powered USB hub that can supply power
greater than 1 amp.

2
Programming the

BeagleBone Black

Before you get started with building your robotic projects, let's take a bit of time to either
introduce or review how to program the BeagleBone Black.

Mission briefing
Now that you are up and running, you'll want your BeagleBone Black to start doing
something. This requires you to either create your own programs, or edit an existing
program. This chapter will provide a brief introduction into editing a file and programming.

Why is it awesome?
It is fun to build hardware, and you'll spend a good deal of time designing and building your
robots, but without programming, your robots won't get very far. This chapter will introduce
you to file editing and programming concepts, so you'll feel comfortable creating some of the
fairly simple programs that we'll talk about through the book. You'll also know how to change
programs that are already available, making your robot do even more amazing things.

Your objectives
In this chapter we will:

ff Introduce some of the basic Linux commands and show how to navigate around the
filesystem on the BeagleBone Black

ff Show how to create, edit, and save files on the BeagleBone Black

ff Learn how to create and run Python programs on the BeagleBone Black

Programming the BeagleBone Black

36

ff Introduce some of the basic programming constructs on the BeagleBone Black

ff Show how the C++ programming language is both similar and different so you can
understand when you need to change C++ code files

Mission checklist
We're going to use the basic configuration that you created in Chapter 1, Getting Started
with the BeagleBone Black. You can either accomplish the tasks in this chapter by connecting
a keyboard, mouse, and monitor to the BeagleBone Black or by remotely logging into the
BeagleBone Black using vncserver, or remotely logging using SSH. Any of these methods will
work to complete the examples in this chapter.

Basic Linux commands and
navigating the filesystem

After completing Chapter 1, Getting Started with the BeagleBone Black, you should have
a working BeagleBone Black running a version of Linux called Ubuntu. We selected this
distribution because it is the most popular and has the largest set of supported hardware
and software. The commands I am going to review should also work with other versions of
Linux, but I'll be showing examples using Ubuntu.

Prepare for lift off
So, power up your BeagleBone Black and log in using the proper username and password. If
you are going to log in remotely, go ahead and establish the connection and log in. Now we
will take a quick tour of Linux. This will not be extensive, but we will walk through some of
the basic commands.

Engage thrusters
Once you have logged in, you should open up a terminal window. If you are logging in using
a keyboard, mouse, and monitor, or using vncserver, you'll find the terminal selection by
selecting the Applications Menu in the upper-left hand corner, then selecting the Terminal
Emulator selection, as shown in the following screenshot:

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 2

37

If you are using PuTTY to use SSH to log in, you should already be at the terminal emulator
program. Either way, it should look something like this:

Programming the BeagleBone Black

38

Your cursor is at the command prompt. Unlike Microsoft Windows, or Apple's OS, most of
our work will be done by actually typing commands into the command line. So, let's try a
few. First, type ll, and you should something like this:

The command ll in Linux is an abbreviation for list-long and lists all the files and directories
in our current directory with information about who owns the files, the times they were
created, and the various permissions on the files. The files are listed by their names; you
can tell the directories because they are normally in a different color, and d proceeds the
lines for those listing. In this case Videos is a directory. The default installation of Ubuntu
has no directories. Installing the Xfce windows manager creates the Desktop, Documents,
Downloads, Music, Pictures, Public, Templates, and Videos directories.

You can move around the directory structure by issuing the cd (change-directory) command.
For example, if you want to see what is in the Videos directory, type cd ./Videos. Now if
you issue the ll command, you should see something like this:

Chapter 2

39

This directory is empty, except for a couple of default directory selections. Now, I should
point out that you used a shortcut when you typed cd ./Videos. The . is a shortcut for
the default directory. You could also have typed cd /home/ubuntu/Videos and gotten the
exact same result, because you were in the /home/ubuntu directory, which is the directory
where you always start when you first log in to the system.

If you ever want to see which directory you are in, simply type pwd, which stands for print-
working-directory. If you do that here, you should get:

Programming the BeagleBone Black

40

The result is /home/ubuntu/Videos. Now, you can use two different shortcuts to move
back to the default directory. The first is to type cd ..; this will take you to the directory just
above this one in the hierarchy. Do this, then type pwd, and you should see the following:

The other way to get back to the home directory is to type cd ~, as this will always return
you to the home directory. If you were to do this from the Videos directory, and then type
pwd, you will see something like this:

Chapter 2

41

You can also use cd –, which will direct you to the last directory accessed. Another way
to go to a specific file is to use the entire path name. In this case, if you want to go to
the /home/ubuntu/Video directory from anywhere in the filesystem, simply type
cd /home/ubuntu/Video and you will go to that directory.

There are a number of other Linux commands that you might find useful as you program
your robot. Here is a table with some of the more useful commands:

Linux command What it does

ll List-long: Lists all the files and directories in the current
directory. This includes lots of extra information about the
file, including time it was created, permissions, owners, and
so on.

ls List-short: Lists all the files and directories in the current
directory by just their names.

rm filename Remove: Removes whichever file is specified by the
filename.

mv filename1
filename2

Move: Renames filename1 to filename2.

cp filename1
filename2

Copy: Copies filename1 to filename2.

mkdir
directoryname

Make directory: Make a directory with the name.
directoryname. This will be made in the current
directory unless otherwise specified.

cat filename Catalog filename: Displays the file, you may want to use the
| less command at the end of this so that it will display
the file a page at a time. Use the space bar to go to the next
page.

clear Clear: Clears the current terminal window.

sudo Super user: If you type the sudo command in front of any
command, it will do that command as the super user. This
can be required if the command or program you are trying
to execute needs super user permissions. If, at any point in
this book, you type a command or the name of program you
want to run and it seems to suggest that the command does
not exist, or permission is denied, try it again with sudo in
front of the command or name of the program.

Objective complete – mini debriefing
Now you can play around and look at your system and the files that are available to you. Be
a bit careful! Linux is not like Windows; it will not warn you if you try to delete a file, or copy
over a current file.

Programming the BeagleBone Black

42

Creating, editing, and saving files on
the BeagleBone Black

Now that you can log in and move easily between directories and see which files are in your
directories, you'll want to be able to edit those files. To do this, you'll need a program that
allows you to edit the characters in a file. If you are used to working in Microsoft Windows,
you probably have used a program like Microsoft Notepad, Wordpad, or Word to do this.
As you might imagine, these are not available in Linux. There are several choices, all of
which are free. I am going to show you how to use an editor program called Emacs. Other
possibilities are programs like nano, vi, vim, and gedit. Programmers have strong preferences
about which editor to use, so if you already have a favorite, you can skip this section.

Prepare for lift off
If you want to use Emacs, then download and install Emacs by typing sudo apt-get
install emacs.

Engage thrusters
Once installed, you can run Emacs simply by typing emacs filename, where filename is the
name of the file you want to edit. If the file does not exist, then Emacs will create the file.
Here is what you will see if you type emacs example.py at the prompt:

Chapter 2

43

Notice that unlike Windows, Linux doesn't automatically assign file extensions; it is up to
us to specify what kind of file we want to create. Notice that Emacs has indicated, in the
lower left, that you have opened a new file. Now, if you are using Emacs in the Xfce windows
interface, either because you have a monitor, keyboard, and mouse hooked up or are
running vncserver, you can use the mouse in much the same way that you use the mouse in
the Microsoft world.

However, if you are running Emacs from SSH, you won't have the mouse available, so you'll
need to move around the file using the cursor keys. You'll also have to use some keystroke
commands to save your file, as well as accomplish a number of other tasks you would
normally use the mouse to select. For example, when you are ready to save the file you'll
use Ctrl + X then Ctrl +S, and that will save the file under the current filename. When you
want to quit Emacs you'll use Ctrl + X then Ctrl + C. This will stop Emacs and return you to
the command prompt. If you are going to use Emacs inside of Emacs, here are a number of
keystroke commands you might find useful:

emacs command: What it does

Ctrl + X and Ctrl + S Save: Saves the current file.

Ctrl + X and Ctrl + C Quit: Exits Emacs and returns to the command prompt.

Ctrl + K Kill: Erases the current line.

Ctrl + U Undo: Reverts the last action.

Left mouse button:
text selection

Cursor: right mouse
button

Cut and paste: If you select the text you want to paste
with the mouse using the left mouse button, then move
the cursor to where you want to paste the code, then hit
the right mouse button, the code will be pasted to that
location.

Objective complete – mini debriefing
Now that you have the capability to edit files, in the next section you'll use this capability to
create programs.

Creating and running Python
programs on the BeagleBone Black

Now that you can get around, and even edit programs, you can begin to use the BeagleBone
Black to create programs so you can control your robotic projects.

Programming the BeagleBone Black

44

Prepare for lift off
Now that you are ready to begin programming, you'll need to choose a language. There are
many available, C, C++, Java, Python, Perl, and a great deal of other possibilities. I'm going to
introduce you to Python for two reasons. First, it is a straightforward language that is intuitive
and very easy to use. Second, much of the open source functionality in the robotics world is
available in Python. We'll also cover a bit of C in this chapter as well, as some functionality is
only available in C. But it makes most sense to start in Python. To work the examples in this
section, you'll need a version of Python installed to complete this section. Fortunately the basic
Ubuntu system has a version already installed, so you are ready to begin.

We are going to just cover some of the very basic concepts here. If you are new to
programming, there are a number of different websites that provide interactive tutorials. If
you'd like to practice some of the basic programming concepts in Python using these tools,
try www.codeacademy.com or http://www.learnpython.org/ and give it a try. There
are also a number of excellent books, for example, A Byte of Python.

Engage thrusters
In this section we'll cover how to create and run a Python file. It turns out that Python is an
interactive language, so you could run Python and then type in commands one at a time.
But we want to use Python to create programs, so we are going to type our commands using
Emacs and then run them from the command line by invoking Python. Let's get started.

Open an example Python file by typing emacs example.py. Now, let's put some code in
the file. Start with these five lines:

http://www.codeacademy.com
http://www.learnpython.org/

Chapter 2

45

Note, your code may be color coded. I have removed the color
coding here so that it is easier to read.

Here is an explanation of the code.

Let's go through the code to see what is happening:

1.	 a = input("Input value: "): One of the basic needs of a program is to get
input from the user. raw_input allows us to do that. The data will be input by the
user and stored in the variable a. The prompt Input value: will be shown to the
user.

2.	 b = input("Input second value: "): This data will also be input by the user
and stored in the variable b. The prompt Input second value: will be shown
to the user.

3.	 c = a + b: This is an example of something you can do with the data; in this
example you can add the variables a and b.

4.	 print c: Another basic need of our program is to print out results. The print
command prints out the value of c to the display.

Once you have created your program, save it (using Ctrl + X then Ctrl + sS) and quit Emacs
(using Ctrl + X then Ctrl + C). Now from the command line run your program by typing
python example.py. You should see something like this:

Programming the BeagleBone Black

46

You can also run the program right from the command line without typing python
filename by adding one line to the program. Now the program looks like this:

Adding #!/usr/bin/python as the first line simply makes this file available for us to
execute from the command line. Once you have saved the file and exited Emacs, type chmod
+x example.py. This will change the file's execution permissions so the computer will now
believe it and execute it. You should be able to simply type ./example.py and the program
should run, like this:

Notice that if you simply type example.py, the system will not find the executable file. In
this case the file has not been registered with the system, so you have to give it a path to the
file, in this case ./ is the current directory.

Chapter 2

47

Objective complete – mini debriefing
Now that you know how to create, enter, and run your simple Python programs, let's look at
some programming constructs.

Basic programming constructs on
the BeagleBone Black

Now that you know how to enter and run a simple Python program on the BeagleBone Black,
let's look at some more complex programming constructs. Specifically, we'll cover what to
do when we want to decide which instructions to execute and show how to loop our code
to do the same thing more than once. I'll give a brief introduction into how to use libraries in
the Python code, and how to organize statements into functions. Finally I'll very briefly cover
object oriented code organization.

Prepare for lift off
As with the previous section, once you have the basic system and Emacs, you are ready to
start coding.

Engage thrusters
As you have seen, your programs normally start with the first line of code and then continue,
executing the next line, until your program runs out of code. This is fine, but what if you
want to decide between two different courses of action? We can do this in Python using an
if statement. Here is some example code:

Programming the BeagleBone Black

48

Here is the detail, line by line:

1.	 #!/usr/bin/python: This is included so that you can make your program
executable.

2.	 a = input("Input value: "): One of the basic needs of a program is to get
input from the user. raw_input allows us to do that. The data will be input by the
user and stored in the variable a. The prompt Input value: will be shown to the
user.

3.	 b = input("Input second value: "): This data will also be input by the user
and stored in the variable b. The prompt Input second value: will be shown to
the user.

4.	 if a > b:: This is an if statement. The expression is evaluated, in this case a >
b. If it is true, the program will do the next statement(s) that are indented. If not, it
will skip those statement(s). In this case c = a – b.

5.	 else:: The else is an optional part of the command. If the expression in the if
statement is evaluated as false, then the indented statement(s) will be executed, in
this case c = b - a.

6.	 print c: Another basic need of our program is to print out results. The print
commands prints out the value of c to the display.

You can run this program a couple of times, checking both possibilities of the if statement:

Chapter 2

49

Another useful construct is the while construct; it will allow us to execute a set of
statements over and over until a specific condition has been met. Here is a piece of code that
uses this construct:

Here are the details of this code:

1.	 #!/usr/bin/python: This is included so you can make your program executable.

2.	 a = 0: Set the value of variable a to 0. We'll need this only to make sure we do the
loop at least once.

3.	 b = 1: Set the value of variable b to 1. We'll need this only to make sure we do the
loop at least once.

4.	 while a != b:: The expression a != b (in this case != means not equal to) is
checked. If it is true, then the statement(s) that are indented are executed. When
the statement evaluates as false, then the program jumps to the statements after
the indented section.

5.	 a = input("Input value: "): One of the basic needs of a program is to get
input from the user. raw_input allows us to do that. The data will be input by the user
and stored in the variable a. The prompt Input value: will be shown to the user.

6.	 b = input("Input second value: "): This data will also be input by the user
and stored in the variable b. The prompt Input second value: will be shown to
the user.

7.	 c = a + b: The variable c is loaded with the sum of a and b.

8.	 print c: The print commands prints out the value of c to the display.

Programming the BeagleBone Black

50

Now you can run the program, and notice that when you enter the same value for a and b,
the program stops as shown in the following screenshot:

The next concept we need to cover is how to put a set of statements into a function. Here is
the code:

And here is the explanation of the code:

1.	 #!/usr/bin/python: This is included so that you can make your program
executable.

2.	 def sum(a, b):: This defines a function whose name is sum. This function takes
to arguments, a and b.

3.	 c = a + b: Anytime the sum function is called, it will add the value in a with the
value in b.

4.	 return c: When the function is finished it will return c to the calling expression.

5.	 if __name__=="__main__":: In this particular case, you don't want your
program to start at the top of the file and then execute each statement, rather you
want to start here. This line tells the program to begin its execution at this point.

Chapter 2

51

6.	 d = input("Input value: "): This data will also be input by the user and
stored in the variable d. The prompt Input value: will be shown to the user.

7.	 e = input("Input second value: "): This data will also be input by the user
and stored in the variable e. The prompt Input second value: will be shown to
the user.

8.	 f = sum(d, e): The function sum is called. The value in variable d is copied into
the variable a in the sum function, and the variable e is copied to the variable b in
the sum function. The program then goes to the sum function and executes it. The
return value is then stored in the variable f.

9.	 print f: The print commands prints out the value of f to the display.

And here is the result when you run the code:

The next topic we need to cover is how to add functionality to our programs using libraries.
Libraries include functionality that someone else has created that you want to add to your
code. As long as the functionality exists, and your system knows about it, then you can
include the library. So let's modify our code again:

Programming the BeagleBone Black

52

And here is the line-by-line description of the code:

1.	 #!/usr/bin/python: This is included so that you can make your program
executable.

2.	 import time: This includes the time library. The time library includes a function
that allows you to pause for a certain number of seconds.

3.	 if __name__=="__main__":: In this particular case, you don't want your
program to start at the top of the file and then execute each statement, rather you
want to start here. This line tells the program to begin its execution at this point.

4.	 d = input("Input value: "): This data will also be input by the user and
stored in the variable d. The prompt Input value: will be shown to the user.

5.	 time.sleep(1): This line calls the sleep function in the time library, which will
cause a 1 second delay.

6.	 e = input("Input second value: "): This data will also be input by the user
and stored in the variable e. The prompt Input second value: will be shown to
the user.

7.	 f = d + e: The variable f is loaded with the value of d + e.

8.	 print f: The print commands prints out the value of f to the display.

And your result:

Of course this looks very similar to the other results. But, you will notice a pause when you
enter the first value and the second value.

Chapter 2

53

The final topic we need to cover is object oriented organization in your code. In object
oriented programming we organize a set of related functions into an object. If, for example,
we have a set of functions that are all related, you can place them in the same class and then
call them by associating them with a specific class. This is a complex and difficult topic, but
let me just show a simple example:

And here is an explanation of the code:

1.	 #!/usr/bin/python: This is included so that you can make your program
executable.

2.	 class ExampleClass(object):: This defines a class named ExampleClass.
This class can have any number of functions associated with it.

3.	 def add(self, a, b):: This defines the function add as part of the
ExampleClass. We can have functions that have the same names as long as they
belong to different classes. This function takes two arguments, a and b.

4.	 c = a + b: The statement is a simple adding of two values.

5.	 return c: The function returns the result of the addition.

6.	 if __name__=="__main__":: In this particular case, you don't want your
program to start at the top of the file and then execute each statement, rather you
want to start here. This line tells the program to begin its execution at this point.

7.	 example = ExampleClass(): This defines a variable named example, whose
type is ExampleClass. It now has access to all the functions and variables
associated with the class ExampleClass.

Programming the BeagleBone Black

54

8.	 d = input("Input value: "): This data will also be input by the user and
stored in the variable d. The prompt Input value: will be shown to the user.

9.	 e = input("Input second value: "): This data will also be input by the user
and stored in the variable e. The prompt Input second value: will be shown to
the user.

10.	 f = example.add(d,e): The instance of ExampleClass is called, and its
function add is executed by sending d and e to the function. The result is returned
and stored in the variable f.

11.	 print f: The print commands prints out the value of f to the display.

And the result:

This result is the same as the others, there is no functionality difference; however,
object-oriented techniques are used to keep like functions organized together to make
code easier to maintain. It also makes it easier for others to use your code when the
program size grows.

Objective complete – mini debriefing
Now you have a feel for the basics of Python coding, I'll introduce you very briefly to the C++
coding language.

Introduction to the C++ programming
language

Now that you've been introduced to a simple programming language in Python, we need
to spend a bit of time talking about a more complex but powerful language called C++. C++
is the original language of Linux, and has been around for many decades, but is still widely
used by open source developers. It is similar to Python, but is also a bit different, and since
you may need to understand and make changes to C++ code, you should be familiar with it
and how it is used.

Chapter 2

55

Prepare for lift off
As with Python, you will need to have access to the language capabilities. These come in
the form of a compiler and build system, which turns your text files that contain programs
to machine code that the processor can actually execute. To do this, type sudo apt-get
install build-essential. This will install the programs you need to turn your code into
executables for the system.

Engage thrusters
Now that the tools are installed, let's walk through some simple examples. Here is the first
C++ code example:

And here is an explanation of the code:

1.	 #include <iostream>: This is a library that is included so that your program can
input data from the keyboard and output information to the screen.

2.	 int main(): As with Python, we can put functions and classes in the file, but you will
always want to start execution at a known point; C++ defines this as the main function.

Programming the BeagleBone Black

56

3.	 int a;: This defines a variable named a, of type int. C++ is a strongly typed
language, which means we need to declare the type of the variable we are defining.
The normal types are int: a number that has no decimal points, float: a number
that requires decimal points, char: a character of text, and bool: a true or false
value.

4.	 int b;: This defines a variable named b, of type int.

5.	 int c;: This defines a variable named c, of type int.

6.	 std::cout << "Input value: ";: This will display the string Input value:
to the screen.

7.	 std::cin >> a;: The input that the user types will go into the variable a.

8.	 std::cout << "Input second value: ";: This will display the string Input
second value: to the screen.

9.	 std::cin >> b;: The input that the user types will go into the variable a.

10.	 c = a + b: The statement is a simple adding of two values, placing the result into
the variable c.

11.	 std::cout << c << std::endl;: The cout command prints out the value of
c to the display. The endl at the end prints out a carriage return so that the next
character appears on the next line.

12.	 return 0;: The main function ends and returns 0.

To run this program, you'll need to run a compile process to turn it into an executable
program that you can run. To do this, after you have created the program, type g++
example2.cpp –o example2. This will then process your program, turning it into a file
that the computer can execute. The name of the executable program will be example2 (as
specified by the name after the output –o option).

Chapter 2

57

If you do an ll on your directory after you have compiled this, you should see the example2
file in your directory:

By the way, if you run into a problem, the compiler will try to help you figure out the
problem. If, for example, you were to forget the int before int a; you would get the
following error when you try to compile:

Programming the BeagleBone Black

58

The error message indicates a problem in the int main() function, and tells you that
the variable a was not successfully declared. Once you have the file compiled, to run the
executable, type ./example2 and you should be able to create the following result:

I will not repeat the entire Python tutorial for C++ here; there are several good tutorials
out on the Internet that can help. For example, at http://www.cprogramming.com/
tutorial/c-tutorial.html and http://thenewboston.org/list.php?cat=14.
There is one more aspect of C++ you will need to know about. The compile process that
you just encountered seemed fairly straightforward. However, if you have your functionality
distributed between a lot of files, or need lots of libraries, the command-line approach to
executing a compile can get unwieldy.

The C++ development environment provides a way to automate this process, it is called the
make process. When using this, you create a text program named makefile that defines
the files you want to include and compile, and instead of typing a long command or set
of commands you simply type make and the system will execute a compile based on the
definitions in the makefile. Here is a tutorial that talks more about this system:
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/, or
http://mrbook.org/tutorials/make/.

Objective complete – mini debriefing
Now you are equipped to edit and create your own programming files. The next chapters will
provide you with lots of opportunity to practice your skills as you translate lines of code into
cool robotic capabilities.

http://www.cprogramming.com/tutorial/c-tutorial.html
http://thenewboston.org/list.php?cat=14
http://thenewboston.org/list.php?cat=14
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://mrbook.org/tutorials/make/

Chapter 2

59

Mission accomplished
It is always a bit difficult to try new things. If this is your first attempt at programming, you
might feel a bit uncomfortable as I ask you to create or edit files. However, I will try to give you
explicit instructions on what to type so that you can be successful. There is one major challenge
with working with computers. They always do exactly what you tell them to do, not necessarily
what you wanted them to do. So if you encounter problems, check several times to make sure
that your code matches the example exactly. Now, on to some actual coding!

A challenge
If you are going to do a significant amount of coding you'll want to install an IDE, or
Integrated Development Environment. These environments make it much easier to see,
edit, compile, and debug your programs. The most popular of these programs in the Linux
world is called Eclipse. If you'd like to know more, start with a Google search, or go to
http://www.eclipse.org/.

http://www.eclipse.org/
http://www.eclipse.org/

3
Providing Speech
Input and Output

Now that your BeagleBone Black is up and operating, you can give your project many different
basics of functionality that are really cool. We're going to start with speech; it is a good basic
project and offers several examples of adding capability in both HW and SW. So buckle up and
get ready to learn the basics of interfacing with your board by facilitating speech.

Mission briefing
You'll be adding a microphone and speaker to our basic board, and you'll add functionality so
the robot can recognize voice commands and respond via the speaker. Additionally, you'll be
able to issue voice commands and have the robot respond with an action. When you're freed
from typing in commands, you can interact with your projects in an impressive way. This
project will require adding both HW and SW.

Why is it awesome?
Interfacing with your projects via speech is more fun than typing in commands, and it allows
interaction with our project without using a keyboard or mouse. Besides, what self-respecting
robot wants to carry around a keyboard? No, you want to interact in natural ways with your
projects, and this project will teach you how. Interfacing via speech also helps you find your
way around the board, learn the available free functionality, and become familiar with the
community of functionality developers.

Providing Speech Input and Output

62

Your objectives
Your objectives are as follows:

ff Hooking up the HW to make and input sound

ff Using eSpeak to allow your projects to respond in a robot voice

ff Using PocketSphinx to interpret your commands

ff Providing the capability to interpret your commands and have your robot initiate
an action

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Mission checklist
Before beginning this project, you'll need a working BeagleBone Black system that
connects to power and the Internet (see Chapter 1, Getting Started with the BeagleBone
Black, for instructions). Additionally, this project requires a USB microphone/speaker
adapter. The board itself does not have either an audio out or audio in. The HDMI output
does support audio, but most of your projects will not be connected to video monitors
with speaker capability.

You'll need three pieces of HW:

ff A USB device that supports microphone in and speaker out (see the following image)

Chapter 3

63

ff A microphone that can plug into the USB device (see the following image)

ff A powered speaker that can plug in to the USB device (see the following image)

Fortunately, these devices are very inexpensive and widely available. Make sure the speaker
is powered because your board will generally not be able to drive a passive speaker with
enough power for your applications. A speaker can use either internal battery power or an
externally powered USB hub. Many of your projects will require a powered USB hub, so it's
a good investment.

Providing Speech Input and Output

64

Hooking up the HW to make and
input sound

For this task, you are going to hook up your HW so that you can record and play sound.

Prepare for lift off
Reassemble your BeagleBone Black. Plug in the LAN cable. Connect the powered USB hub and
plug in the microphone/speaker USB device. Also plug in your speakers and the microphone.

Plug in the power. You can execute all of the following instructions in one of the several ways.

If you are still connected to the display, keyboard, and mouse, log in to the board, use
startx to start Xfce (your windowing system), and then open a terminal window.

If you are only connected via LAN, you can do all of this using an SSH terminal window, so as
soon as your board flashes that it has power (look for the heartbeat LED), open up an SSH
terminal window using PuTTY or some similar terminal emulator. Once the terminal window
comes up, log in with your username and password. Now type in cat /proc/asound/
cards. You should see the following response:

Chapter 3

65

Notice that the system thinks there are two possible audio devices. The first is the HDMI
sound device, and the second is your USB audio plugin. Now you can use the USB card to
both create and record sound.

Engage thrusters
First, let's play some music to test that the USB sound device is working. You'll need to
configure your system to look for your USB card and use it as the default to play and record
sound. To do this, you'll need to add a couple of libraries to your system. The first are some
ALSA libraries. ALSA stands for Advanced Linux Sound Architecture, and it is going to enable
your sound system on the BeagleBone Black.

First install the two libraries associated with ALSA by typing sudo apt-get install
alsa-base alsa-utils. Then also install some files that help provide the sound library
by typing sudo apt-get install libasound2-dev.

If your system already contains these libraries, Linux will simply tell you that they are already
installed or that they are up-to-date. After installing both libraries, reboot your BeagleBone
Black. It takes time, but the system needs a reboot after new libraries or HW are installed.

Now you'll use an application called alsamixer to control the volume of both the input and
the output of your USB sound card. Type alsamixer at the prompt. You should see a screen
that looks like the following:

Providing Speech Input and Output

66

Press F6 and select your USB sound device using the arrow keys. You should see a screen
that looks like the following:

You can use the arrow keys to set the volume for both the speakers and the microphone.
Use the m key to unmute the microphone. In the preceding screenshot MM is mute and
∞ is unmute. Make sure your settings look like the following:

Chapter 3

67

Let's make sure your system knows about your USB sound device. At the prompt, type
aplay –l. You should see the following:

If this did not work, try sudo aplay –l. Once you have added the libraries, you'll need
to add a file. You are going to add a file in your home directory with the name .asoundrc.
This will be read by your system and used to set your default configuration. To do this:

1.	 Open the file named .asoundrc using your favorite editor.

2.	 Type in pcm.!default sysdefault:Device.

3.	 Save the file.

The file should look like the following:

Providing Speech Input and Output

68

This will tell the system to use your USB device as default. Once you have completed this,
reboot your system again.

Now, you'll play some music. To do this, you need a sound file and a way to play it. I used
WinScp from my Windows machine to transfer a simple .wav file to the Music subdirectory
on my BeagleBone Black. You are going to use an application called aplay to play your sound.
Go to the Music directory and you should see the music file by simply typing ll (list long,
this will give you all the details of your files). Mine looks like the following:

Now type aplay Dance.wav to see if you can play music using the generic aplay music
player. You will see, and hopefully hear, the following result:

If you aren't hearing any music, check the volume you set with alsamixer and the power to
your speaker. Also, aplay can be a bit finicky with the type of files it accepts, so you may have
to try different .wav files until it will play. One more thing to try, if the system doesn't seem
to know about the program, is to type sudo aplay Dance.wav.

Chapter 3

69

Now that you can play the sound, let's record some sound. To do this, you're going to use
the arecord program. At the prompt, type arecord -d 5 -r 48000 test.wav. This will
record five seconds of sound at a 48000 Hz sample rate. Once you have typed the command,
either speak into the microphone or make some other recognizable sound. You should see
the following in the terminal:

Once you create the file, play it with aplay. Type aplay test.wav, and you should hear the
recording. If you can't hear your recording, check alsamixer to make sure your speakers and
microphone are both unmuted.

Objective complete – mini debriefing
Now you can play music or other sound files using your BeagleBone Black. You can change
the volume of your speaker and record your voice or other sounds on the system. You're
ready for the next step.

Classified intel
Ubuntu offers a number of different music and sound recording program options that
are more full-featured than aplay and arecord. If you'd like, spend some time researching
them on the Internet and install them onto your system. Several work well with your Xfce
installation as well, although you may need to configure your windowing system to know
about and use your USB sound device.

Providing Speech Input and Output

70

Using eSpeak to allow your projects
to respond in a robotic voice

Sound is an important tool in your robotic toolkit, but you will want to do more than just play
music. Let's allow your robot to speak.

Prepare for lift off
Now that you can both get sound in and out of your BeagleBone Black, let's do something
useful with this capability. You're going to start by enabling eSpeak, an open source
application that provides you with a computer voice.

Engage thrusters
eSpeak is an open source voice generation application. To get this free functionality, you'll
need to do the following.

Download the eSpeak library by typing sudo apt-get install espeak. You'll probably
have to accept the additional size space that the application requires, but this is fine based
on your SD card size. The download may take a while, but the prompt will reappear when it
is complete.

Now, let's see if the BeagleBoard Black has a voice. Type the following command: espeak
"hello". The speaker should emit a computer voiced "hello". If it is does not, check the
speakers and volume level.

Now that you have a computer voice, you need to customize it. eSpeak offers a fairly complete
set of customization features, including a large number of languages, "voices", and other
options. To access these, you can type in the options at the command line. For example, type
in espeak -v+f3 "hello", and you should hear a female voice. Add a Scottish accent by
typing espeak –ven-sc+f3 "hello". My personal favorite is the West Midlands accent
using a female voice: espeak –ven-sc+f3 "hello". Now that you have your desired voice,
you can set it as the default, so you don't always have to include it in the command line.

Chapter 3

71

To set the default, go to the default file definition for eSpeak, which is in the /usr/share/
espeak-data/voices directory. You should see something like the following:

The default file is the one that eSpeak uses to choose a voice. To get your desired voice, en-wm
with a female tone, you are going to combine two files into the default file. The first file, the
female tone, is in the !v directory. Type \!v whenever you want to specify this directory.
You need to type the \ character because! is a special character in Linux, and if you want to
use it as a regular old character, you need to put a \ before it. Before combining the two
files, copy the current default into a file called default.old, so that it can be retrieved
later if needed. The next step is to copy the f3 voice into your default file. Type this
command: sudo cp ./\!v/f3 default. Now edit this file. It should look like the following:

Providing Speech Input and Output

72

This has all the settings for your female voice. The setting for the accent will be in the en-wm
file, located in the en directory. Combining the two will give us the following file:

Now you can simply type espeak and get your desired computer voice.

Objective complete – mini debriefing
Now your project can speak. Simply type espeak followed by the text you want to speak in
quotes, and out comes your speech. If you want to read an entire text file, you can do that as
well, using the –f option and then typing the name of the file. Try this by using your editor
to create a text file called speak, then typing this command: espeak -f speak.txt.

Chapter 3

73

Classified intel
There are lots of choices with respect to eSpeak. Feel free to play around and choose your
favorite. Then edit the default file to set it to that voice. Don't expect, however, that you'll
get the kind of voices that you hear from computers in the movies. Those are actors, not
computers, although one day we will hopefully get to the point where computers will sound
a lot like people.

Using PocketSphinx to interpret your
commands

Sound is cool, and speech is even cooler, but you also want to be able to communicate
with your projects through voice commands. This section will show you how to add speech
recognition to your robotic projects.

Prepare for lift off
Now that your project can speak, you want it to listen as well. This isn't nearly as simple
as the speaking part, but thankfully you have some significant help from the development
community. You are going to download a set of capabilities called PocketSphinx, which will
allow your project to listen to your commands.

Engage thrusters
The first step is downloading the PocketSphinx capability. Unfortunately, this is not quite as
user friendly as the eSpeak process, so follow along carefully.

Go to the Sphinx website, hosted by Carnegie Mellon University at http://cmusphinx.
sourceforge.net/. This is an open source project that provides you with the speech
recognition SW. With your smaller embedded system, you will be using the PocketSphinx
version of this code.

You will have to download two pieces of SW modules: sphinxbase and PocketSphinx. Select
the download option at the top of the page, and then find the latest version of both of these
packages. Download the .tar.gz version of these and move them to the /home/ubuntu
directory of your BeagleBone Black. However, before you build these, you need two libraries.

The first library is libasound2-dev. If you skipped the first two objectives of this project,
you'll need to download it now using sudo apt-get install libasound2-dev. If
you're unsure that it's installed, try it again. The system will warn you if it's already installed.

Providing Speech Input and Output

74

The second is a library called Bison. This is a general purpose, open source parser that will
be used by PocketSphinx. To get this package, type sudo apt-get install bison.

Once everything is installed and downloaded, you can build PocketSphinx. First, your home
directory should look like the following, with the tar.gz files of both pocketsphinx
and sphinxbase:

To unpack and build the sphinxbase, type sudo tar –xzvf sphinx-base-0.x.tar.
gz, where x is the version number; in my case it is 8. This should unpack all the files from the
archive into a directory called sphinxbase-0.x. Now change directory to sphinxbase-0.x.
Listing the files should show something like the following:

To build the application, start by issuing the command: ./configure --enable-fixed.
This command will check to make sure everything is fine with the system and then configure
a build. When I first attempted this command, I got the following error:

Chapter 3

75

This highlighted an interesting problem. The time and date on my BeagleBone Black was
not set to the current time and date. The BeagleBone Black does not have a battery like
your PC, so it cannot store a date. Issuing the date command confirmed this as shown in the
following screenshot:

If you need to set the current date and time, do that by issuing the command sudo date
nnddhhmmyyyy.ss, where nn is the month, dd is the day, hh is the hour, mm is the minute,
yyyy is the year, and ss is the seconds. This will set the date to the desired date. Now you
can reissue the ./configure --enable-fixed command.

One final install will enable you to use makefiles to compile your code. This library is
build-essential. Install this by typing sudo apt-get install build-essential.
Now you are ready to actually build the sphinxbase codebase. This is a two-step process:

1.	 Type make, and the system will build all the executable files.

2.	 Type sudo make install, and it will install all the executables onto the system.

Now you need to make the second part of the system: the PocketSphinx code itself.

Providing Speech Input and Output

76

Go to the home directory and uncompress and unarchive the code by typing tar -xzvf
pocketsphinx-0.8.tar.gz. The files should now be unarchived, and you can now build
the code. You'll follow similar steps for these files:

1.	 Change directory to the pocketsphinx-0.8 directory and type ./configure to
see if you are ready to build the files.

2.	 Type make, wait for a bit for everything to build, then type sudo make install.

Several possible additions to your library installation will be useful later if you
are going to use your PocketSphinx capability with Python as a coding language.
You can install python-dev using sudo apt-get install python-
dev and Cython using sudo apt-get install cython. You can also
choose to install pkg-config, a utility that can sometimes help do with complex
compilations. Install it using sudo apt-get install pkg-config.

Once the installation is complete, you'll need to let the system know where your files are. To
do this you will need to edit the /etc/ld.so.conf as root. Add one line to the end of the
file, /usr/local/lib, so that your file looks like this:

Now type /sbin/ldconfig, and the system will now be aware of your PocketSphinx
libraries.

Everything is installed, so you can try your speech recognition. Change directory
to the bring this all on one line directory to try a demo program. Type
pocketsphinx_continuous. This program takes in input from the microphone and
turns it into speech. After running the command, you'll get a lot of irrelevant information
and then see the following:

Chapter 3

77

Even though it tells you that it can't find your microphone element or a capture element,
if you have set things up as previously described, you should be ready to give it a command.
Say "hello" into the microphone. When it senses that you have stopped speaking, it will
process your speech, give lots of irrelevant information again, but should eventually
show this screen:

Notice the 000000001: hello. It recognized your speech! You can try other words and phrases
too. The system is very sensitive, so it may pick up background noise. You are also going to
find that it is not very accurate. If you'd like to improve the accuracy, see the Classified intel
section. To stop the program, type cntrl-c.

Providing Speech Input and Output

78

Objective complete – mini debriefing
Your system can understand your speech input! In the next section of this project, you'll learn
how to use this input to have the project respond.

Classified intel
There are two ways to make the system more accurate. One is to train the system to more
accurately understand your voice. It is a bit complex, and if you want to know more go to
Carnegie Mellon University's (CMU) PocketSphinx website.

The second way to improve accuracy is to limit the number of words that your system uses
to determine what you are saying. The default has literally thousands of word possibilities,
so if two words are close, it may choose the wrong word. To avoid this, you can make your
own grammar to restrict the words it has to choose from.

The first step is to create a file with the words or phrases you want the system to recognize.
Then you use a web tool to create two files that the system will use to define your grammar.
I'll do this through the vncserver, since I'll need to use a web browser. The next step is to
create a file called grammar.txt and insert the text shown in the following screenshot:

Now you must use the CMU web tool to turn this file into two files that the system can
use to define its dictionary. On my system, I have already installed Firefox using sudo
apt-get install firefox. So, now I can open a web browser window and go to this URL:
http://www.speech.cs.cmu.edu/tools/lmtool-new.html. If I hit the browse button,
I can then find and select the file. It should look something like the following:

Chapter 3

79

Open the grammer.txt file, then on the web page select COMPILE KNOWLEDGE BASE,
and the following window should pop up:

Providing Speech Input and Output

80

You need to download the .tgz file the tool created, in this case the TAR1565.tgz file.
This will download to your /home/ubuntu/Download directory. Move it to the /home/
ubuntu/pocketsphinx-0.8/src/programs directory and unarchive it using tar –xzvf
and the filename. You should end up with the programs shown in the following screenshot
in the directory:

Now you can invoke pocketsphinx_continuous to use this dictionary by typing
pocketsphinx_continuous -lm 1565.lm -dict 1565.dic, and it will look in that
directory to find matches to your commands.

You can also do this on your remote computer using Windows, creating the file in a text
editor such as WordPad. Once you have created the required grammar files, you can
download them to your BeagleBone Black using WinScp.

Providing the capability to interpret
your commands and have your robot
initiate an action

Now that your robot can both speak and listen, let's see if you can make it respond to
your commands.

Prepare for lift off
Now that the system can both hear and speak, you want to provide the capability to respond
to your speech and execute some commands based on the speech input. Now you're going
to configure the system to respond to simple commands.

Chapter 3

81

Engage thrusters
In order to respond, you're going to edit the continuous.c code in the /home/ubuntu/
src/programs directory. You could create your own C file, but this file is already set up in
the makefile system and is an excellent starting spot. I like to make a copy of the current file
into continuous.c.old, so I can always get back to the starting program if it is required.
Then you will need to edit the continuous.c file. It is very long and a bit complicated, but
you are specifically looking for the following section in the code:

In this section of the code, the word has already been decoded and is held in the variable hyp.
You can add code here to make your system do things based on the value associated with
the word you have decoded. First, let's try adding the capability to respond to "hello" and
"goodbye" to see if you can get the program to stop. Make the following changes to the code:

1.	 Find the comment /* Exit, if the first word spoken was GOODBYE */.

2.	 In the statement if (strcmp(word, "good bye") == 0), change the good
bye to GOODBYE.

3.	 Put { } around the break; statement and add the following statement just before
the break;: system ("espeak" \"good bye\"");.

Providing Speech Input and Output

82

4.	 Add another else if statement to the clause by typing else if (strcmp(hyp,
"HELLO") == 0). Add { } after the else if statement and inside the brackets,
system ("espeak" \"good bye\"");.

The file should now look like this:

Now you need to rebuild your code. Since the make system already knows how to
build the program pocketsphinx_continuous, anytime you make a change to the
continuous.c file, it will rebuild the application. Simply type make, and the file will
compile and create a new version of pocketsphinx_continuous. To run your new version,
type ./pocketsphinx_continuous. Make sure you type the ./ at the start; if not, the
system has another version of pocketsphinx_continuous in the library and will run that.

If everything is set correctly, saying "hello" should result in a response of "hello" from your
BeagleBone Black. Saying "good bye" should elicit a response of "good bye," as well as
shutting down the program. Notice the system command can be used to run any program
that runs with a command line. Now you can use this program to start and run other
programs based on the commands.

Chapter 3

83

Objective complete – mini debriefing
Finally, your BeagleBone Black will both listen and respond, and it will execute a command.
You are now ready to move on to providing sight for your system.

Classified intel
I'm using the C files that came with PocketSphinx to interact with the system. A set of Python
files also came with the system. If you prefer to work in Python, go ahead and explore those
examples in the /home/ubuntu/pocketsphinx-0.8/python directory.

Mission accomplished
Now your project can both hear and speak. You can use this later when you want to interface
with your project without typing commands or using a display. You should also feel more
comfortable installing new hardware and software onto your system. You'll be using that skill
throughout the book as you look at more complex projects.

A challenge
You'll use this capability to allow your robot to respond to your commands in several of your
projects. I've used one example with the system C command. You should try others. You
could also start programs and keep them going, interfacing with them without invoking them
over and over again at the command line. If you are familiar with Linux, think about the
messaging protocols that you could use to interface two running programs.

4
Allowing the

BeagleBone Black
to See

Your projects can communicate via voice; now you are going to add vision with a webcam.
You'll use this functionality in lots of different applications. Fortunately, adding hardware and
software for vision is both easy and inexpensive.

Mission briefing
In this chapter, you'll add a USB webcam to your system. Having the standard USB interface
on your board opens a wide range of amazing possibilities. On top of that, there are several
amazing open-source libraries. These offer complex capabilities that you can use in your
projects without spending months coding them.

Why is it awesome?
Vision will open a set of possibilities for your project. These can range from simple motion
detection to advanced capabilities such as facial recognition, object identification, and even
object tracking. The robot can also use vision to detect its surroundings and avoid obstacles.

Allowing the BeagleBone Black to See

86

Your objectives
In this chapter we will cover:

ff Connecting your USB camera to your BeagleBone Black and viewing the images

ff Downloading and installing OpenCV, a full-featured vision library

ff Using the vision library to detect colored objects

Downloading the example code and colored images

You can download the example code files and colored images for this
Packt book you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Mission checklist
To complete this mission, you'll need a BeagleBone Black with a LAN connection and a 5V
power supply. You'll need to add a USB webcam. Try to find a recently manufactured one.
You may have an older webcam sitting on your project shelf, but it will probably cause
problems, and the money you save will not be worth the frustration. I would stick with
webcams from the major players such as Logitech or Creative Labs.

In most cases, you won't need to connect this device through a powered-USB hub; however,
if you encounter problems, for example if the system does not recognize that your webcam is
connected, realize that the lack of USB power could be the problem.

Connecting the USB camera to the
BeagleBone Black and viewing the
images

Our first step in enabling computer vision is connecting the USB camera to the USB port. I
have a new Logitech HD 720 camera as my example.

Prepare for lift off
To access the USB webcam, I like to use a program called guvcview. Install this by typing
sudo apt-get install guvcview.

Chapter 4

87

Engage thrusters
Connect your USB camera and make sure your LAN cable is plugged in. Then apply power to
the BeagleBone Black. After the system is booted, you can check to see if the BeagleBone
Black has found your USB camera. Go to the /dev directory and type ls. You should see the
output as shown in the following screenshot:

Look for the video0 device, the webcam. If you see it, the system knows your camera is
there.

Now let's use guvcview to see the output of the camera. Since this will need to output some
graphics, you either need to use a monitor connected to the board as well as a keyboard and
a mouse, or you can use vncserver. If you are going to use vncserver, make sure you start the
server on the BeagleBone Black by typing vncserver via SSH. Then start up your vncviewer
as described in Chapter 1, Getting Started with the BeagleBone Black. Open a terminal
window and type sudo guvcview.

Allowing the BeagleBone Black to See

88

You should see the output as shown in the following screenshot:

The video window displays what the webcam sees, and the GUVCViewer Controls window
controls the different characteristics of the camera. The default settings of the Logitech HD
720 work fine. However, if you get a black screen for the camera, you may need to adjust the
settings. Click on the GUVCViewer Controls window and the Video & Files tab. You will see a
window where you can adjust the settings for your camera.

Chapter 4

89

The most important setting is the Resolution. If you see a black screen, adjust the
resolution down; often this will resolve the issue. This window will also tell you what
resolutions are supported for your camera. Also, you can display the frame rate by checking
the box at the right of the Frame Rate setting. Be aware, however, that if you are going
through vncviewer, the refresh rate will be much slower than if you're using the BeagleBone
Black and a monitor directly.

Once you have the camera up and running and a desired resolution set, you can go on to
download and install OpenCV.

Objective complete – mini debriefing
Your system can now "see" the outside world. Guvcview can actually capture images or
video and store them as files, but OpenCV provides a full-featured set of image processing
capabilities as well.

Classified intel
You can connect more than one webcam to the system. Follow the same steps, but connect
to cameras via a USB hub. List the devices in the /dev directory. Use guvcview to see
the different images. One challenge, however, is that connecting too many cameras can
overwhelm the bandwidth of the USB port.

Downloading and installing OpenCV –
a full-featured vision library

Now that you have your camera connected, you can begin to access some amazing
capabilities that have been provided by the open source community. The most popular of
these for computer vision is OpenCV.

Prepare for lift off
Now you need to install OpenCV, a complete vision library that provides tools for you to use to
capture, process, and save your images. Before you do this, you need to expand the partition
on your SD card so that you can download all the applications that you need. When you wrote
the Linux operating system to your SD card, you copied a 2 GB image; so now your card thinks
it is only a 2 GB card, no matter what size it really is. You need to reclaim this space.

Allowing the BeagleBone Black to See

90

To do this, you'll need to issue some fairly cryptic commands, but you can use the defaults,
so it will be straightforward. First, open a terminal window. The card I am using is an 8
GB card, so if your card is of a different size, you might not see the exact same numbers.
Fortunately you'll be using default values throughout the process, so you won't need to
know anything special about your card. To begin, type sudo su, and then enter your
password. Then follow these steps:

1.	 Type ll /dev/mmcblk* and you should see output similar to the
following screenshot:

2.	 Now you are going to make changes to the mmcblk0 device. Type fdisk /dev/
mmcblk0.

3.	 Enter the p command and you should see the details of the different types of
storage that you currently have available, similar to the output shown in the
following screenshot:

Chapter 4

91

4.	 You are going to expand the second device, /dev/mmcblk0p2. To do this you are
going to delete the partition, then create a new partition. The information that
exists on your SD card should be preserved throughout this process, however.
Enter d at the prompt, then 2, for partition 2. Now enter p again and the following
screenshot will be displayed:

Allowing the BeagleBone Black to See

92

5.	 Now you will create a new partition using defaults so that the partition takes up
the entire card. At the Command prompt type an n, then p, then 2 and then hit
Enter through each choice that the programs request. Your device should now
reappear, similar to the following screenshot, with a different size based on the size
of your SD card:

6.	 Notice that the second partition is now much larger than the original. Now type w to
commit your changes. Now you need to reboot, so type reboot.

7.	 The final steps will expand the file system. After the system reboots, type sudo su
and enter your password. Now type df, the command to see how much disk you have
free. You should be able to see the output as shown in the following screenshot:

Chapter 4

93

8.	 It is the /dev/mmcblk0p2 device that you want to resize. Type resize2fs /dev/
mmcblk0p2 and then enter df; you should be able to see the output as shown in
the following screenshot:

Now your device is ready to use.

Engage thrusters
First, you'll need to download a set of libraries and OpenCV itself. There are several possible
steps. I'm going to suggest the ones that I follow to install it on my systems. Once you have
booted the system and opened a terminal window, type the following commands in the
given order:

1.	 sudo apt-get install update: If you haven't done this in a while, it is a good
idea to do this now before you start. You will be downloading a number of new
software packages, so it is good to make sure everything is up to date.

2.	 sudo apt-get install build-essential: You have done this in the previous
chapter, but if you skipped that part, you are going to need this package.

3.	 sudo apt-get install libavformat-dev: This library provides a way to code
and decode audio and video streams.

4.	 sudo apt-get install ffmpeg: This library provides a way to transcode audio
and video streams.

Allowing the BeagleBone Black to See

94

5.	 sudo apt-get install libcv2.3 libcvaux2.3 libhighgui2.3: These
are the basic OpenCV libraries. Note the number. This will almost certainly change as
new versions of OpenCV become available. If Version 2.3 does not work, either try
Version 2.4 or google for the latest version of OpenCV.

6.	 sudo apt-get install python-opencv: This is the Python development kit
for OpenCV, needed as you are going to use Python.

7.	 sudo apt-get install opencv-doc: This library provides the documentation
for OpenCV, just in case you need it.

8.	 sudo apt-get install libcv-dev: This library provides the header files and
static libraries to compile OpenCV.

9.	 sudo apt-get install libcvaux-dev: This library provides more
development tools for compiling OpenCV.

10.	 sudo apt-get install libhighgui-dev: This is another package that
provides header files and static libraries to compile OpenCV.

11.	 Make sure you are in your home directory, and then type cp-r/usr/share/doc/
opencv-doc/examples: This will copy all the examples to your home directory.

12.	 Go to the examples/c directory by typing cd ./examples/c and type sh
build_all.sh and you will have a set of executable files that will allow you to see
if the system is working.

Now you are ready to try out the OpenCV library. I prefer to use Python when programming
simple tasks, so I'll show the Python examples. If you prefer the C examples, feel free to
explore. In order to use the Python examples, you'll need one more library. So type sudo
apt-get install python-numpy as you will need this to manipulate the matrices that
OpenCV uses to hold the images.

Now that you have those, you can try one of the Python examples. Change directory to the
Python examples by typing cd /home/ubuntu/examples/python. In this directory you
will find a number of useful examples, we'll only look at the most basic. It is called camera.
py. You can try running this example; however, to do this you'll either need to have a display
connected to the BeagleBone Black, or you can do this over the vncserver connection. Bring
up a terminal window and type python camera.py. You should see output similar to the
following screenshot:

Chapter 4

95

In my case the camera window eventually turned black, but did not show the output
from the camera. I found that I needed to change the resolution of the image to the one
supported by the camera and OpenCV. To do this you edit the camera.py file, and add two
lines as shown in the following screenshot:

Allowing the BeagleBone Black to See

96

These two lines change the resolution of the captured image to 360 x 240 pixels. Now run
camera.py, and you should be able to see the output similar to the following screenshot:

Objective complete – mini debriefing
Your project can now see! You will use this capability to do a number of impressive tasks that
will use this vision capability.

Classified intel
You may want to play with the resolution to find the optimum for your application. Bigger
images are great—they give you more detailed view of the world—but they also take
up significantly more processing power. You'll play with this more as you actually ask
your system to do some real image processing. Be careful if you are going to use vnc to
understand your system performance as this will significantly slow down the update rate. An
image that is twice the size (width/height) will involve four times more processing.

Chapter 4

97

Using the vision library to detect
colored objects

Now that you have access to the OpenCV library, let's see what it can do.

Prepare for lift off
OpenCV and your webcam can track objects. This might be useful if you are building a
system that needs to track and follow a colored ball. OpenCV makes this amazingly simple
by providing some high-level libraries that can help you with this task. I'm going to do this
in Python, as I find it much easier to work with than C. If you feel more comfortable in C,
these instructions should be fairly easy to translate. Also, performance will be better if
implemented in C, so you might create the initial capability in Python, and then finalize the
code in C.

Engage thrusters
If you'd like, create a directory to hold your image-based work. From your home directory,
create a directory named imageplay by typing mkdir imageplay. Then change directory
to imageplay by typing cd imageplay.

Once there, let's bring over your camera.py file as a starting point by typing cp /home/
ubuntu/examples/python/camera.py./camera.py. Now you are going to edit the file
until it looks similar to the following screenshot:

Allowing the BeagleBone Black to See

98

Let's look specifically at the changes you need to make to camera.py. The first four lines
you add are as follows:

 #Smooth image, then convert the Hue
 cv.Smooth(img,img,cv.CV_BLUR,3)
 hue_img = cv.CreateImage(cv.GetSize(img), 8, 3)
 cv.CvtColor(img,hue_img, cv.CV_BGR2HSV)

We are going to use the OpenCV library to first smooth the image, taking out any large
deviations. The next two lines create a new image that stores the image in values of HSV
(Hue (color), Saturation, and Value) instead of the RGB (Red, Green, and Blue) pixel values
of the original image. Converting to HSV focuses your processing more on the color, as
opposed to the amount of light hitting it.

Then we add the following lines of code:

 #Remove all the pixels that don't match
 threshold_img = cv.CreateImage(cv.GetSize(hue_img), 8, 1)
 cv.InRangeS(hue_img, (38,120, 60), (75, 255, 255),
 threshold_img)

You are going to create yet one more image, this time a black-and-white binary image that is
black for any pixel which is not between two certain color values. The (38, 120, 60) and
(75, 255, 255) parameters determine the color range. In this case I have a green ball,
and I want to detect the color green.

Now run the program. You'll need to either have a display, keyboard, and mouse connected
to the board or you can run it remotely using vnc. Run the program by typing sudo python
camera.py. You should see a single black image, but move this window and you will expose
the original image window as well. Now take your target (I used my green ball) and move it
into the frame. You should see output similar to the following screenshot:

Chapter 4

99

Notice the white pixels in your threshold image showing where the ball is located. You can
add more OpenCV code that gives the actual location of the ball. You can actually draw a
rectangle around the ball as an indicator in your original image file of the location of the ball.
Edit the camera.py file to look like the following screenshot:

Allowing the BeagleBone Black to See

100

First, add these lines:

 # Find all the areas of color out there
 storage = cv.CreateMemStorage(0)
 contour = cv.FindContours(threshold_img, storage, cv.CV_RETR_
CCOMP, cv.CV_C\
HAIN_APPROX_SIMPLE)

These lines find all the areas on your image that are within the threshold. There may be
more than one; so you want to capture them all. Now you will add a while loop that will let
you step through all the possible contours:

 #Step through all the areas
 points = []
 while contour:

By the way, it is important to note that if there is another larger green blob in the
background, you will "find" that location. Just to keep this simple, you'll assume your green
ball to be unique. The next few lines will then get the information for each of your contours.
Now, you want to identify the corners. Then you can check to see if the area is big enough to
be of concern. If it is, you will add a rectangle to your original image identifying where you
think it is:

 # Get the info about this area
 rect = cv.BoundingRect(list(contour))
 contour = contour.h_next()
 #Check to make sure the area is big enough to be of
 concern
 size = (rect[2] * rect[3])
 if size > 100:
 pt1 = (rect[0], rect[1])
 pt2 = (rect[0] + rect[2], rect[1] + rect[3])
 #Add a rectangle to the initial image
 cv.Rectangle(img, pt1, pt2, (38, 160, 60))

Chapter 4

101

Now that the code is ready, you can run it. You should see output similar to the
following screenshot:

You can now track your object.

Objective complete – mini debriefing
Now that you have the code, you can modify the color or add more colors. You also have
the location of your object, so later you can attempt to follow the object or manipulate it in
some way.

Classified intel
OpenCV is an amazing powerful library of functions. You can do all sorts of incredible things
with just a few lines of code. Another common feature you may want to add to your projects
is motion detection. If you'd like to try, there are several good tutorials, try looking at:

ff http://derek.simkowiak.net/motion-tracking-with-python/

ff http://stackoverflow.com/questions/3374828/how-do-i-track-
motion-using-opencv-in-python

ff https://www.youtube.com/watch?v=8QouvYMfmQo

ff https://github.com/RobinDavid/Motion-detection-OpenCV

Allowing the BeagleBone Black to See

102

Mission accomplished
Your projects can now speak and see! You can issue commands, and your projects can
respond to changes in the physical environment sensed by the webcam. Next, you will add
mobility using motors, servos, and in other ways.

Challenges
Having a webcam connected to your system provides all kinds of additional capabilities. One
of the absolute neatest devices out there is Kinect for the Xbox. This device provides not
only video, but depth using an infrared device. There are individuals working to make Kinect
work with the BeagleBone Black. Several good libraries enable Kinect on Ubuntu.
If you'd like to try, buy a used Kinect and then go to http://speculatrix.tumblr.com/
post/23043561344/kinect-on-the-beagleboard-and-ubuntu or
http://kinepeutics.blogspot.com/2012/04/ethernet-working-installing-
kinect.html and give it a try. Just a word of warning, this task is not for beginners.
Later we will talk about the Robot Operating System, which may make it easier.

Also, you can get 3D vision with OpenCV using two cameras. There are several good places
for example code, for example in the samples/cpp directory that came with OpenCV there
is an example stereo_match.cpp. Also, for more code examples, you can visit http://
code.google.com/p/opencvstereovision/source/checkout.

5
Making the Unit

Mobile – Controlling
Wheeled Movement

You can now talk to the board, and it can talk back. It can even see. Now, you will add the
capability to move the entire project using wheels.

Mission briefing
Perhaps the easiest way to make your projects mobile is to add a wheeled platform. In this
project, you will be introduced to some of the basics of controlling DC motors and using the
BeagleBone Black to control the speed and direction of your wheeled platform.

Why is it awesome?
Even though you can talk to your board, and it can talk back and see, you need to make it
mobile to really call it a robot. In this project, you'll learn how to attach your board, both
mechanically and electrically, to a wheeled platform. Mobility—what could be more amazing
than that?

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Making the Unit Mobile – Controlling Wheeled Movement

104

Your objectives
In this project you will:

ff Use a motor controller to control the speed of your platform

ff Control your mobile platform programmatically using the BeagleBone Black

ff Make your platform truly mobile by issuing voice commands

Mission checklist
You'll need to add some HW, specifically a wheeled or tracked platform, to make your project
mobile. There are a lot of choices. Some are completely assembled, others have some
assembly required, or you can buy the components and construct your own custom mobile
platform. Throughout this book, I'm going to assume that you don't want to do any soldering
or mechanical machining yourself, so let's look at a couple of the more popular variants that
are available completely assembled or can be assembled with simple tools (screwdriver and/
or pliers). The following is a numbered list of the specific items:

1.	 The easiest mobile platform is one that has two DC motors that each control a single
wheel with a small ball in the front or back. The following is an image of one, sold by
SparkFun, called the Magician Chassis:

I did have to assemble this one, but it was fairly straightforward. For more choices
in two-wheeled platforms, go to http://www.robotshop.com/2-wheeled-
development-platforms-1.html. You could also choose a tracked platform
instead of a wheeled platform. A tracked platform has more traction, but is not
as nimble in that it takes a longer distance to turn. Again, manufacturers make
preassembled units. The following is an image of a preassembled tracked platform,
made by Dagu. It's called the Dagu Rover 5 Tracked Chassis:

Chapter 5

105

2.	 Since you have a mobile platform, you'll need a mobile power supply for the
BeagleBone Black. I personally like the external 5V rechargeable cell phone batteries
that are available almost anywhere that sells mobile phones. These batteries can
be charged using a USB cable, either through a DC power supply or directly for a
computer USB port. Choose one that comes with two USB output connectors. You'll
need them both at some point: one for the BeagleBone Black and one for your
powered USB hub. See one in the following image:

You'll also need a USB cable to connect your battery to the BeagleBone Black, but
you can just use the cable supplied with the BeagleBone Black.

3.	 Use your powered USB hub; you'll need to power it not from a wall socket but from
the same battery.

Making the Unit Mobile – Controlling Wheeled Movement

106

4.	 To power your USB hub, purchase a USB power cable that can connect to your
powered hub. My USB hub required a USB to 5.5 mm / 2.1 mm 5V DC Barrel Jack
Power cable, which I purchased quite inexpensively from www.amazon.com. The
CAT5 cable is the LAN connection. The following image shows how the configuration
looks like so that it can be mobile from a power perspective:

5.	 Now that you have the mobile platform, you'll need one more bit of HW to connect
your BeagleBone Black to it. You'll need some HW that will take the control signals
from your BeagleBone Black and turn them into a voltage to control the speed of the
motors. Unfortunately, the board cannot source enough current to power the motors
directly, so you'll need a circuit that can do this. I strongly suggest you purchase a
motor controller instead of designing and building your own. There are numerous
possibilities; however, I'm going to suggest one that requires no internal programming
and allows you to talk over USB to control the motors. It costs a bit more because
you'll need two of them, but it will require much less time and effort to get things
rolling. It is a simple motor controller from Pololu: the Pololu #1372 Simple Motor
Controller 18V7 (Fully Assembled) from www.pololu.com. See its following image:

Chapter 5

107

When you purchase the unit, make sure that you purchase the fully assembled unit;
it does come unassembled as well.

This piece of HW will turn USB commands into voltage that controls your motors.
You'll need two of these since you are going to control two motors. Also, you are
going to connect the controllers to the BeagleBone Black via USB, so you'll need the
USB hub and two USB A to mini-B cables.

6.	 The final piece you will need is two short pieces of wire, less than 2 inches, stripped at
the end. You can buy these wires, called male-male jumper wires, online, for example
from www.pololu.com or www.amazon.com. They also come in male-female and
female-male versions. The following is an image of a set I purchased recently:

Again, I've selected components to avoid required soldering.

Now that you have all the HW, let's walk through a quick tutorial about how the system
works and then some step-by-step instructions to make your project mobile.

Using a motor controller to control
the speed of your platform

The first step to make the platform mobile is adding a motor controller. This allows us to
control the speed of each wheel (or track) independently.

Making the Unit Mobile – Controlling Wheeled Movement

108

Prepare for lift off
Before you get started, let's spend some time understanding the basics of the motor control.
Whether you chose the two-wheeled mobile platform or the tracked platform, the basic
movement control is the same. The unit moves by engaging the motors. If the desired
direction is straight, the motors run at the same speed. If you want to turn the unit, the
motors run at different speeds. The unit can turn in a circle if you run one motor forward and
one backwards.

DC motors are fairly straightforward devices. The speed and direction of the motor is
controlled by the magnitude and polarity of the voltage applied to its terminals. The higher
the voltage, the faster the motor will turn. If you reverse the polarity of the voltage, you can
reverse the direction the motor is turning.

The magnitude and polarity of the voltage is not the only important factor when you think
about controlling the motors, however; the power that your motor can apply to moving your
platform is also determined by the voltage and the current supplied at its terminals.

There are GPIO pins on the BeagleBone Black that you could use to create the control voltage
and drive your motors. These GPIO pins provide direct access to some of the control lines
available from the processor itself. However, the unit cannot source enough current, and
your motors would not be able to generate enough power to move your mobile platform.
You can also cause physical damage to your BeagleBone Black board. That is why you will
need to use the motor controller, as it will provide both voltage and current, so that your
platform can move reliably. In this case, I have chosen to hook up two motor controllers that
can be controlled directly via USB, making the connections and programming much simpler.

Engage thrusters
The first step in making your project mobile is connecting the motor controller to the
platform. There are two connections you need to make. First, you'll need to connect a
battery to the controller. Second, you'll need to connect the motors themselves.

To connect the battery, find the output connectors on the battery holder. On the wheeled
platform, you'll need to do a little work, as the connector on the battery has a plug. Remove
the plug and strip back the wire about a half an inch. It should look like the following image:

Chapter 5

109

On the back of the motor controller, notice the labels VIN, OUTB, OUTA, and GND, which are
shown in the following image:

Once you have the battery pack ready, insert the wires into the motor controller in the blue
connectors marked VIN and GND. VIN is the constant DC voltage in from your batteries, and
GND is the ground connection from your batteries. OUTA and OUTB are the control signals
to your DC motors. You'll notice that close to the battery connector, one of the wires is red.
Follow that wire to the end and insert it into the VIN connector, and then tighten the screw
connector. Close to the battery connector, you'll notice one of the wires is black: insert that
wire into the connector marked GND and tighten the screw connector.

Making the Unit Mobile – Controlling Wheeled Movement

110

The package will look like the following image:

Now, connect one of the motors to the motor controller by connecting the red and black
wires with male connectors to the two inner blue screw connectors, the red one to OUTA
and the black one to OUTB. In order to test the platform, turn it over. The entire system
should now look like the following image:

Chapter 5

111

You can now test the system by using SW provided by Pololu. If you want to first try it
on a Windows PC, install the Windows driver SW from http://www.pololu.com/
docs/0J44/3.1. Unzip and install the SW, then connect your motor controller to the
PC using a USB cable and then start the SW. You should see a screen as shown in the
following screenshot:

Making the Unit Mobile – Controlling Wheeled Movement

112

The Safe start violation tab is set when you first enter the program; you need to clear this
by clicking on the Resume button at the bottom-left corner of the screen. The screen should
now look like the following screenshot:

You can now control the motor by selecting the slider on the lower-left section of the screen.
The motor should now turn when you select a value other than zero percent, as shown in
the following screenshot:

Chapter 5

113

The motor should now be turning! You have control of the DC motor. Repeat the previous
steps with the second controller.

You can also do some limited direct control of your motor controller through your
BeagleBone Black. If you are going to do this remotely, log on through PuTTY. You'll also want
to open a vncview session to have access to a web browser. If you are doing this directly on a
monitor, simply log in. Then, perform the following steps:

1.	 Open a web browser window and type the URL of the Linux version of your motor
controller from http://www.pololu.com/docs/0J44/3.2. This is the Linux
version of your test SW. Download this code by selecting the link on the web page
and selecting the Save File button.

2.	 Move the code to the home directory by going to the Download directory and
using the mv command by typing: mv smc-linux-101119.tar.gz. (The specific
number may be slightly different, as revisions change. Only one version will be
available on the website; use that version.)

Making the Unit Mobile – Controlling Wheeled Movement

114

3.	 Unzip the file you just moved by using the command: tar –xzvf smc-
linux-101119.tar.gz, and this will create a new directory smc-linux
with the files in it.

4.	 Change directory (cd) to the smc-linux directory and list the files (ll). You should
see something like the following screenshot:

5.	 The following are two steps defined in the README.txt file that you need to
perform:

�� First, you need to download some additional SW. To do this, type: sudo
apt-get install libusb-1.0-0-dev mono-runtime libmono-
winforms2.0-cil.

�� Second, you need to copy a file in order to give yourself privileges to access
the HW. To do this, type sudo cp 99-pololu.rules /etc/udev/
rules.d/ and all users will be able to access the HW.

6.	 Now, you should plug your motor controller into the powered USB hub; then plug
the powered USB into the to the BeagleBone Black. The configuration will look like
the following image:

Chapter 5

115

7.	 You'll need to do a sudo reboot on the BeagleBone Black to get it to recognize
the motor controller. Once you have done this, either log in directly or open a
PuTTY window. Unfortunately, you can't run the graphical user interface program on
your BeagleBone Black, so you won't need a vncview session, but you can run the
SmcCmd program, which will allow you to configure and control the motor controller.
Type ./SmcCmd, and you will get the list of possible interactions with the motor
controller. They will look as shown in the following screenshot:

Making the Unit Mobile – Controlling Wheeled Movement

116

8.	 First, type ./SmcCmd –s. This should show you the status of your device. It should
look something as shown in the following screenshot:

9.	 Now, you can issue commands to your motor controller. First, you need to clear the
errors currently stopping the motor, in this case the default Safe start violation.
Type the command: ./SmcCmd --resume. Then issue the command: ./SmcCmd
--speed 1000, and the motor should be turning! You can turn the motor off by
issuing the command: ./SmcCmd --stop.

Objective complete – mini debriefing
Now that you have your motor running, your next step is to plug both motor controllers into
the USB hub and control both motors programmatically using the BeagleBone Black.

Chapter 5

117

Controlling your mobile platform
programmatically using the
BeagleBone Black

Now that you have your basic motor controller functionality up and running, you need to
connect both motor controllers to the BeagleBone Black. This task will cover this, and then
show you how to control your entire platform programmatically.

Prepare for lift off
Now you'll hook up both motor controllers to the battery power supply and motors. Let's
start with the motor controllers. The screw-type connectors on your motor controllers make
this easy and help you avoid any soldering.

First, run the battery connectors to the VIN and GND connections on one of the motor
controllers. Then, take one of the two small lengths of the jumper wire and place that in the
VIN connector, and then do the same with the second jumper wire and the GND connector,
as shown in the following image:

Now screw the connection tight. Do this on both the VIN and GND connectors. Now, take the
other end of these two jumper wires and place them in the VIN and GND connections on the
other motor controller and screw them tight. Now, you have power connections to both of
your motor controllers.

Making the Unit Mobile – Controlling Wheeled Movement

118

The next step is to connect each of the motors to one of the motor controllers, using the
same technique that you used in the last task. Take the red and black wire connections
from the motor and place them in the OUTA and OUTB connections, the red in the OUTA
connection and the black in the OUTB connection, as shown in the following image:

Now, you need to connect the BeagleBone Black and its USB hub to the motor controllers.
First, connect the USB to the motor controllers using the USB cables. Then, connect the
USB hub to the BeagleBone Black using its USB cable. These connections are shown in the
following image:

Once you've made these connections, you can configure all of the HW on top of the mobile
platform, perhaps as shown in the following image:

Chapter 5

119

I tend to use lots of cable ties, but if you'd like it to look even more polished, feel free to use
more metal nuts and bolts.

Engage thrusters
I suggest you use Python in your initial attempts to control the motor. It is very
straightforward to code, run, and debug your code in Python. I am going to include the
directions in this task for Python; you can also go to the Pololu's website at www.pololu.
com/ and find instructions for how to access the capabilities using C.

The first Python program you are going to create is shown in the following screenshot:

Making the Unit Mobile – Controlling Wheeled Movement

120

To create this program, go to your smc_linux directory and type emacs dcmotor.py
(if you are using a different editor, open a new file with the name dcmotor.py). Now enter
the program. Let's go through the program step by step:

1.	 The first line allows your program to run outside of the Python environment. You'll
use it later when you want to execute your code using voice commands.

2.	 The next line imports the serial library. You need this to talk to our motor controllers.

3.	 The MotorControllerOne class holds four functions. The __init__ function
associates your motor controller with the specific serial port, in this case ttyACM0.
The exitSafeStart function tells your motor that you want to actually run it
now and removes the safe start setting that comes as default. The setSpeed
function takes your speed setting and turns it into a serial command that the unit
can understand, and then sends the command. The close function closes the port
when you leave your program.

4.	 The if __name__=="__main__" section is the main part of your program. The
first line here initializes your motor controller; the second line tells your motor
controller to exit the safe start default. The third line is 200 milliseconds wait, then
the fourth line tells your motor to turn at a speed of 2000. The fourth line in this
section waits one second then the fifth line tells your motor to go back to the 0
speed. The final line is a one second wait.

5.	 In order to run this program, you'll need the serial library. Install it by typing sudo
apt-get install Python-serial at the prompt. You'll then need to add
yourself to the dialout group; do this by typing sudo adduser ubuntu dialout.
Then, do a sudo reboot to enable all these changes.

6.	 With this installed, you can run your program. To do this, type Python dcmotor.
py. Your motor should run for one second then stop. You can now control the motor
through Python! Additionally, you'll want to make this program available to run
from the command line. Type: chmod +x dcmotor.py. If you now do an ll (list
programs), you'll see that your program is now green, which means you can execute
it directly. Now, you can type ./dcmotor.py.

7.	 The final step is to create a second controller for the second motor. Do this, by
adding a MotorControllerTwo class that is a copy of the MotorControllerOne
class except that the port it points to is ttyACM1. This code will look as shown in the
following screenshot:

Chapter 5

121

You will also copy the statements in the main section, so that both motor1 and motor2 do
the same things. You don't need to copy the time.sleep statements. They are just fixed
delays. Now when you run your program, both motors should turn. One important note;
Linux is not a real-time platform, so your motors cannot be guaranteed to turn at exactly
the same time. However, they are normally going to move within a few milliseconds of each
other, which is good enough in this application. My platform turned out to be a bit finicky, I
found I had to do a sudo reboot and re-log in using Putty to reset the USB, so that I could
run the program more than once. Also, you may need to issue the ./SmcCmd --resume
command to reset the motor controllers. A bit painful, but it works.

Making the Unit Mobile – Controlling Wheeled Movement

122

Objective complete – mini debriefing
Now that you know the basics of commanding your mobile platform, feel free to add even
more setSpeed commands to make your mobile platform move. Setting both the motors to
a positive speed will move the mobile platform forward. Setting them to a negative value will
make the platform go in reverse. Running just one motor will make the platform turn, as will
running both the motors in opposite directions.

Classified intel
The platforms you've looked at up until now had two DC motors. It would be easy to add
even more motors. There are several platforms that provide DC motors for all four wheels.
In this case, you'd just add two more motor controllers, and then update the code for four
classes of MotorContoller.

Making your mobile platform truly
mobile by issuing voice commands

Prepare for lift off
You should now have a mobile platform that you can program to move in any number
of ways. Unfortunately, you still have your LAN cable connected, so the platform isn't
completely mobile. And once you have begun the program, you can't alter the behavior
of your program. In this task, you will use the principles from Chapter 2, Programming the
BeagleBone Black, to issue voice commands to initiate movement.

Engage thrusters
You'll need to modify your voice recognition program, so it will run your Python program
when it gets a voice command. If you feel rusty on how this works, review Chapter 2,
Programming the BeagleBone Black. You are going to make a simple modification to the
continuous.c program in /home/ubuntu/pocketsphinx-0.8/src/programs. To do
this, type: cd /home/ubuntu/pocketsphinx-0.8/src/programs and then type emacs
continuous.c. The changes will come in the same section as your other voice commands,
and will look as shown in the following screenshot:

Chapter 5

123

The additions are pretty straightforward. Let's walk through them:

1.	 else if (strcmp(hyp, "FORWARD") == 0): This checks the word as
recognized by your voice command program. If it corresponds with the word
FORWARD, you will execute everything inside the if statement. You use { } to
group and tell the system which commands go with this else if clause.

2.	 system("espeak \"moving robot\""): This executes espeak, which should
tell us that you are about to run your robot program. By the way, you need to type
\" because the " character is a special character in Linux, and if you want the actual
" character, you need to proceed it with the \ character.

3.	 system("/home/ubuntu/smc_linux/dcmotor.py"): This is the program you
will execute. In this case, your mobile platform will do whatever the dcmotor.py
program tells it to do.

After doing this, you will need to recompile the program, so type make and the
executable pocketsphinx_continuous will be created. Run the program by typing
./pocketsphinx_continuous. Disconnect the LAN cable, and the mobile platform
will now take the "forward" voice command and execute your program.

Making the Unit Mobile – Controlling Wheeled Movement

124

Objective complete – mini debriefing
You should now have a complete mobile platform! When you execute your program, the
mobile platform can now move around based on what you have programmed it to do.

Classified intel
You don't have to put all of your capabilities in one program. You can create several
programs, each with a different function, and then connect each of the programs to their
appropriate voice commands. Perhaps one program moves your robot forward, a different
backwards, another to turn right or left.

Mission accomplished
Now you have your mobile platform up and ready to move around. You can command it
using your voice. In the next project, you'll introduce a different kind of mobile platform:
one with legs.

A challenge
You have already covered how to add vision to your BeagleBone Black project. A great
addition to your mobile robot is the ability to follow a colored object attached to a target.

Remember how you used OpenCV to find a colored object, and could then find out where in
your field of view (left or right, or up or down) it existed? You can use this to decide whether
to move your mobile platform right or left, or forward or backward. Try this, and then move
the target to see if your mobile robot can follow it.

6
Making the Unit Very

Mobile – Controlling
Legged Movement

In the previous chapter, we covered wheeled and tracked movement. Cool enough, but what
if you want your robot to navigate uneven ground? Now you will add the capability to move
the entire project using legs.

Mission briefing
We've covered creating robots using a wheeled/track base. In this chapter, you will be
introduced to some of the basics of servo motors and using the BeagleBone Black to control
the speed and direction of your legged platform. Here is an image of a finished project:

Making the Unit Very Mobile – Controlling Legged Movement

126

Why is it awesome?
Even though you've learned to make your robot mobile by adding wheels or tracks, this
mobile platform will only work well on smooth, flat surfaces. Often, you'll want your robot
to work in environments where it is not smooth or flat; perhaps, you'll even want your robot
to go upstairs or over curbs. In this chapter, you'll learn how to attach your board, both
mechanically and electrically, to a platform with legs, so your projects can be mobile in many
more environments. Robots that can walk: what could be more amazing than that?

Your objectives
In this chapter, you will learn:

ff Connecting the BeagleBone Black to a mobile platform using a servo controller

ff Creating a program in Linux to control the movement of the mobile platform

ff Making your mobile platform truly mobile by issuing voice commands

Downloading the example code and colored images

You can download the example code files and colored images for this
Packt book you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Mission checklist
In this chapter, you'll need to add a legged platform to make your project mobile. So, here is
your parts' list:

ff A legged robot: There are a lot of choices. As before, some are completely
assembled, others have some assembly required, and you may even choose to
buy the components and construct your own custom mobile platform. Also, as
before, I'm going to assume that you don't want to do any soldering or mechanical
machining yourself, so let's look at a several choices that are available completely
assembled or can be assembled by simple tools (screwdriver and/or pliers).

Chapter 6

127

One of the easiest legged mobile platforms is one that has two legs and four servo
motors. Here is an image of this type of platform:

You'll use this platform in this chapter because it is the simplest to program and
because it is the least expensive, requiring only four servos. To construct this
platform, you must purchase the parts and then assemble it yourself. Find the
instructions and parts list at http://www.lynxmotion.com/images/html/
build112.htm. Another easy way to get all the mechanical parts (except servos)
is to purchase a biped robot kit with six degrees of freedom (DOF). This will contain
the parts needed to construct your four-servo biped. These six DOF bipeds can be
purchased by searching eBay or by going to http://www.robotshop.com/2-
wheeled-development-platforms-1.html.

ff You'll also need to purchase the servo motors. For this type of robot, you can use
standard size servos. I like the Hitec HS-311 or HS-322 for this robot. They are
inexpensive but powerful enough. You can get those on Amazon or eBay. Here is an
image of an HS-311:

Making the Unit Very Mobile – Controlling Legged Movement

128

ff As in the last chapter, you'll need a mobile power supply for the BeagleBone Black.
Again, I personally like the 5V cell phone rechargeable batteries that are available
almost anywhere that supplies cell phones. Choose one that comes with two USB
connectors, just in case you want to also use the powered USB hub. This one mounts
well on the biped HW platform:

ff You'll also need a USB cable to connect your battery to the BeagleBone Black, but you
can just use the cable supplied with the BeagleBone Black. If you want to connect your
powered USB hub, you'll need a USB to DC jack adapter for that as well.

ff You'll also need a way to connect your batteries to the servo motor controller. Here
is an image of a four AA battery holder, available at most electronics parts stores or
from Amazon:

Chapter 6

129

ff Now that you have the mechanical parts for your legged mobile platform, you'll
need some HW that will take the control signals from your BeagleBone Black and
turn them into a voltage that can control the servo motors. Servo motors are
controlled using a control signal called PWM. For a good overview of this type of
control, see http://pcbheaven.com/wikipages/How_RC_Servos_Works/ or
https://www.ghielectronics.com/docs/18/pwm. You can find tutorials that
show you how to control servos directly using the BeagleBone Black's GPIO pins,
for example, here at http://learn.adafruit.com/controlling-a-servo-
with-a-beaglebone-black/overview and http://www.youtube.com/
watch?v=6gv3gWtoBWQ. For ease of use I chose to purchase a motor controller
that can talk over USB and control the servo motor. These protect my board and
make controlling many servos easy. My personal favorite for this application is a
simple servo motor controller utilizing USB from Pololu that can control 18 servo
motors. Here is an image of the unit:

Again, make sure you order the assembled version. This piece of HW will turn USB
commands into voltage that control your servo motors. Pololu makes a number of
different versions of this controller, each able to control a certain number of servos.
Once you've chosen your legged platform, simply count the number of servos you
need to control, and chose the controller that can control that number of servos.
One advantage of the 18 servo controller is the ease of connecting power to the unit
via screw type connectors.

ff Since you are going to connect this controller to your BeagleBone Black via USB,
you'll also need a USB A to mini-B cable.

Now that you have all the HW, let's walk through a quick tutorial on how a two-legged system
with servos works and then some step-by-step instructions to make your project walk.

Making the Unit Very Mobile – Controlling Legged Movement

130

Connecting the BeagleBone Black
to the mobile platform using a servo
controller

Now that you have a legged platform and a servo motor controller, you are ready to make
your project walk!

Prepare for lift off
Before you begin, you'll need some background on servo motors. Servo motors are
somewhat similar to DC motors; however, there is an important difference. While DC motors
are generally designed to move in a continuous way—rotating 360 degrees at a given
speed—servos are generally designed to move within a limited set of angles. In other words,
in the DC motor world, you generally want your motors to spin with continuous rotation
speed that you control. In the servo world, you want your motor to move to a specific
position that you control.

Engage thrusters
To make your project walk, you first need to connect the servo motor controller to the
servos. There are two connections you need to make: the first to the servo motors, the
second to the battery holder. In this section, you'll connect your servo controller to your PC
to check to see if everything is working.

1.	 First, connect the servos to the controller. Here is an image of your two-legged
robot, and the four different servo connections:

Chapter 6

131

2.	 In order to be consistent, let's connect your four servos to the connections marked
0 through 3 on the controller using this configuration: 0 – left foot, 1 – left hip, 2 –
right foot, and 3 – right hip. Here is an image of the back of the controller; it will tell
you where to connect your servos:

Making the Unit Very Mobile – Controlling Legged Movement

132

3.	 Connect these to the servo motor controller like this: the left foot to the top O
connector, black cable to the outside (–), the left hip to the 1 connector, black cable
out, right foot to the 2 connector, black cable out, and right hip to the 3 connector,
black cable out. See the following image for a clearer description:

4.	 Now you need to connect the servo motor controller to your battery. If you are
using a standard 4 AA battery holder, connect it to the two green screw connectors,
the black cable to the outside, and the red cable to the inside, as shown in the
following image:

5.	 Now you can connect the motor controller to your PC to see if you can talk with it.

Objective complete – mini debriefing
Now that the HW is connected, you can use some SW provided by Polulu to control the
servos. It is easiest to do this using your personal computer. First, download the Polulu SW
from http://www.pololu.com/docs/0J40/3.a and install it based on the instructions
on the website. Once it is installed, run the SW, and you should see the following screen:

Chapter 6

133

You first will need to change the configuration on Serial Settings, so select the Serial Settings
tab, and you should see a screen as shown in the following screenshot:

Making the Unit Very Mobile – Controlling Legged Movement

134

Make sure that the USB Chained option is selected; this will allow you to connect and control
the motor controller over USB. Now go back to the main screen by selecting the Status tab,
and now you can turn on the four servos. The screen should look like the following screenshot:

Now you can use the sliders to control the servos. Make sure that the servo 0 moves the left
foot, 1 the left hip, 2 the right foot, and 3 the right hip.

You've checked the motor controllers and the servos, and you'll now connect the motor
controller up to the BeagleBone Black control the servos from it. Remove the USB cable
from the PC and connect it into the powered USB hub. The entire system will look like the
following image:

Chapter 6

135

Let's now talk to the motor controller by downloading the Linux code from Pololu at
http://www.pololu.com/docs/0J40/3.b. Perhaps, the best way is to log in to your
Beagle Bone Black by using vncserver and a vncviewer window on your PC. To do this, log
in to your BeagleBone Black using PuTTY, then type vncserver at the prompt to make sure
vncserver is running.

1.	 On your PC open the VNC Viewer application, enter your IP address, then press
connect. Then enter your password that you created for the vncserver, and you
should see the BeagleBone Black Viewer screen, which should look like this:

2.	 Open a Firefox browser window and go to http://www.pololu.com/
docs/0J40/3.b. Click on the Maestro Servo Controller Linux Software link.
You will download the file maestro_linux_100507.tar.gz to the Download directory.

3.	 Go to your download directory, move this file to your home directory by typing
mv maestro_linux_100507.tar.gz .. and then you can go back to your
home directory.

Making the Unit Very Mobile – Controlling Legged Movement

136

4.	 Unpack the file by typing tar –xzfv maestro_linux_011507.tar.gz. This
will create a directory called maestro_linux. Go to that directory by typing cd
maestro_linux and then type ls. You should see something like this:

The document README.txt will give you explicit instructions on how to install the SW.
Unfortunately you can't run MaestroControlCenter on your BeagleBone Black. Our version of
windowing doesn't support the graphics, but you can control your servos using the UscCmd
command-line application. First type ./UscCmd --list and you should see the following:

Chapter 6

137

The unit sees your servo controller. If you just type ./UscCmd you can see all the commands
you could send to your controller:

Notice you can send a servo a specific target angle, although the target is not in angle
values, so it makes it a bit difficult to know where you are sending your servo. Try typing
./UscCmd --servo 0, 10. The servo will most likely move to its full angle position.
Type ./UscCmd --servo 0, 0 and it will stop the servo from trying to move. In the
next section, you'll write some SW that will translate your angles to the commands that
the servo controller will want to see.

If you didn't run the Windows version of Maestro Controller and set the serial settings to
USB Chained, your motor controller may not respond.

Making the Unit Very Mobile – Controlling Legged Movement

138

Creating a program in Linux to
control the mobile platform

Now that you can control your servos using basic commands, let's control them
using a program.

Prepare for lift off
So, you know that you can talk to your servo motor controller and set your servos. In this
section, you'll create a Python SW program that will let you talk to your servos a bit more
intuitively. You'll issue commands that tell a servo to go to a specific angle, and it will go to
that angle. You can then add a set of such commands to allow your legged mobile robot to
lean left, lean right, or even take a step forward.

Engage thrusters
Let's start with a simple program that will make your legged mobile robot's servos go to
90 degrees. This should be somewhere close to the middle of the 180 degrees you can set.
However, the center, maximum, and minimum values can vary from servo to servo, so you
may need to calibrate these values. To keep things simple, we will not cover that here. The
following is the code:

Chapter 6

139

The explanation of the code is as follows:

ff #!/user/bin/python: This first line allows you to make this Python file execute
from the command line. This will allow you to call this program from your voice
command program. We'll talk about that in the next section.

ff import serial, import time: These next two lines include the serial and
time libraries. You need the serial library to talk to your unit via USB, and the
time library you will use later to wait between servo commands.

ff The PololuMicroMaestro class holds the methods that will allow you to
communicate with your motor controller.

ff The first method, the __init__ method, opens the USB port associated with your
servo motor controller.

ff The next method, setAngle, converts your desired setting of servo and angle into
the serial command that the servo motor controller needs. The values, such as
minTarget, maxTarget, and the structure of the communications, channelByte,
commandByte lowTargetByte, and highTargetByte, come from the
manufacturer.

ff The last method, close, closes the serial port.

ff Now that you have the class, the __main__ part of the program instantiates an
instance of your servo motor controller class so you can call it.

ff Now you can set each servo to the desired position. The default would be to set
each servo to 90 degrees. However, the servos were not exactly centered, so I found
on my robot that I needed to set each servo to the values shown in this program to
be lined up so my robot had both feet on the ground and both hips centered.

Making the Unit Very Mobile – Controlling Legged Movement

140

Once you have the basic home position set, you can now ask your robot to do some things.
Here are some examples in simple Python code:

In this case, you are using your setAngle command to set your servos to manipulate your
robot. This set of commands first sets your robot to the home position. Then, you can use
the feet to lean to the right, then to the left, then you can use a combination of commands
to make your robot step forward with the left foot, and then with the right foot.

Chapter 6

141

Objective complete – mini debriefing
Once you have the program working, you'll want to package all your HW onto the mobile
robot. There is no right or wrong way to do this, but I like to use a small piece of transparent
plastic because it is easy to cut and drill. Here is what my robot looks like:

Classified intel
By following these principles, you can make your robot do many amazing things. Walk
forward, walk backward, dance, turn around—any number of movements are possible.
The best way to learn is to try new and different positions with the servos.

Making the Unit Very Mobile – Controlling Legged Movement

142

Making your mobile platform truly
mobile by issuing voice commands

Now that your robot can move, wouldn't it be neat to have it obey your commands?

Prepare for lift off
You should now have a mobile platform that you can program to move in any number
of ways. Unfortunately, you still have your LAN cable connected, so the platform isn't
completely mobile. And once you have begun the program, you can't alter the behavior of
your program. In this section, you will use the principles from Chapter 3, Providing Speech
Input and Output, to issue voice commands to initiate movement.

Engage thrusters
You'll need to modify your voice recognition program, so it will run your Python program
when it gets a voice command. If you feel rusty on how this works, review Chapter 3,
Providing Speech Input and Output. You are going to make a simple modification to the
continuous.c program in /home/ubuntu/pocketsphinx-0.8/src/programs. To
do this, type cd /home/ubuntu/ pocketsphinx-0.8/src/programs and then type
emacs continuous.c. The changes will come in the same section as your other voice
commands, and will look like this:

Chapter 6

143

The additions are pretty straightforward. Let's walk through them:

ff else if (strcmp(hyp, "FORWARD") == 0): This checks the word as
recognized by your voice command program. If it corresponds with the word
FORWARD, you will execute everything inside the if statement. You use { } to tell
the system which commands go with this else if clause.

ff system("espeak \"moving robot\""): This executes espeak, which should
tell you that you are about to run your robot program.

ff system("/home/ubuntu/maestro_linux/robot.py"): This is the program
you will execute. In this case, your mobile platform will do whatever the program
robot.py tells it to do.

After doing this, you will need to recompile the program, so type make and the
executable pocketsphinx_continuous will be created. Run the program by typing
./pocketsphinx_continuous. Disconnect the LAN cable, and the mobile platform will
now take the "forward" voice command and execute your program.

Objective complete – mini debriefing
You should now have a complete mobile platform! When you execute your program, the
mobile platform can now move around based on what you have programmed it to do.

Classified intel
You don't have to put all of your capabilities in one program. You can create several
programs, each with a different function, and then connect each of the programs to their
appropriate voice commands. Perhaps, one command moves your robot forward, a different
backwards, another to turn right or left.

Mission accomplished
Congratulations! Your robot should now be able to move around in any way you'd like to
program. You can even have the robot dance.

Making the Unit Very Mobile – Controlling Legged Movement

144

A challenge
You've now built a two-legged robot, and you can easily expand this to robots with even more
legs. Here is an image of the mechanical structure of a four-legged robot that has eight DOF,
which is fairly easy to create using many of the parts you have used to create your two-legged
robot. This is my personal favorite because it doesn't fall over and break the electronics:

You'll need eight servos, and lots of battery. If you look on eBay, you can often find kits for
sale for four-legged robots with twelve DOF, but again realize that the battery will need to
be much bigger. For these kinds of applications, we often use remote control (RC) batteries.
These are nice, as they are rechargeable, but make sure you either purchase one that is 5
to 6 volts, or include a way to regulate the voltage. Here is a picture of this kind of battery,
available at most hobby stores:

If you use this type of battery, don't forget a charger. The hobby store can help with choosing
an appropriate match.

7
Avoiding Obstacles

Using Sensors

In the previous two chapters, we covered wheeled and tracked movement and then legged
movement. Now your robot can move around. But what if you want the robot to sense the
outside world, so you don't run into things? In this project, you'll discover how to add some
sensors to help us avoid barriers.

Mission briefing
We've covered creating robots using a wheeled/track base and robots that can move using
legs. In this chapter, you will be introduced to some of the basics of sensors, particularly
sensors that can help you avoid objects by alerting you to them.

Why is it awesome?
Your robot will take quite a beating if it continually runs into walls, or off the edge of a
surface. Let's help your robot avoid these so that it looks intelligent.

Avoiding Obstacles Using Sensors

146

Your objectives
In this chapter, you will:

ff Connect the BeagleBone Black to a USB sonar sensor to detect the world around it

ff Use a servo to change the position of your sensor so that a single sensor can view a
large field, eliminating the need for additional sensors

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Mission checklist
In this chapter, you'll need some sensors. I am going to show you how to interface
BeagleBone Black with a sonar sensor. There are other possibilities as well. IR sensors are
also available that will detect distance from a target. However, they are sometimes difficult
to interface using USB. The advantage of this particular sensor is that it already comes with a
USB interface. Here is a image of the USB sonar sensor I like to use on my projects:

It is the USB-ProxSonar-EZ, and can be purchased directly at MatBotix or on Amazon. There
are several models, each with a different distance specification; however, they all work in the
same manner.

Chapter 7

147

Also, you may want to detect distance in more than one direction. You have two choices.
The first is simply to use a number of these sensors, one in each direction. But in the second
section of this chapter, I'll show you how to use a servo to rotate the sensor. This way you
can use a single sensor and just turn it to a new direction. To complete this section, you'll
need a servo and a way to mount it to your project. Again, I like the Hitec series of servos,
and this is ready-made for an HS-311 servo, which should look like this:

Here is a way to mount the sensor to a 90 degree angle bracket. I used one from a robot kit I
purchased on eBay. It can connect to the servo like this:

However, if you want to get really fancy, you can purchase a pan-and-tilt assembly. These
contain two servos and they allow you to rotate your sensor in both the vertical and
horizontal axis. They are available from online stores such as www.robotshop.com. You
can also construct a pan-and-tilt assembly out of components that you may have if you
purchased a legged robot kit.

Avoiding Obstacles Using Sensors

148

The finished product with servos looks like this:

Connecting the BeagleBone Black to
a USB sonar sensor

Now that you have a mobile platform and your robot can move, you will want to check if your
robot could run into something. One of my favorite ways to do this is using a sonar sensor.
First: a little tutorial on sonar sensors. This type of sensor uses ultrasonic sound to calculate the
distance to an object. The sound wave travels out from the sensor, as illustrated here:

Chapter 7

149

The device sends out a sound wave ten times a second. If an object is in the path of these
waves, then the waves reflect off the object, sending waves that return to the sensor, as
shown here:

The sensor then measures any return. It uses the time difference between when the sound
wave was sent out and when it returned, to measure the distance to the object.

Prepare for lift off
The first thing you'll want to do is connect the USB sonar sensor to your PC, just to make sure
everything works well. Here are the steps:

1.	 First, download the terminal emulator SW from http://www.maxbotix.com/
articles/059.htm, and select the Windows download. The page will look like the
following screenshot:

Avoiding Obstacles Using Sensors

150

2.	 Unzip this file. Then plug the sensor into a USB port on your PC. Then open the
terminal emulator file by selecting this file from the directory, as shown in the
following screenshot:

3.	 The following application window should pop up:

4.	 You'll need to change the setting to find the sensor, so select the Settings button,
and you should see this screen:

Chapter 7

151

5.	 Select the Port menu and select the port that is connected to your sensor. Most
often this will be the last one in the list. In my case, I selected COM3, clicked on OK,
and this is what I saw on the main screen:

6.	 Notice the sensor readings. Now place an object in front of the sensor. You should
now see something like this:

The readings have changed, specifically the value after R, and the value P1, indicating an
object in front of the sensor. The R values indicates a range in mm, and P1 indicates an
object is in the range of the sensor. It will read P0 if it thinks there is no object. You'll need to
read these values into your program, and then you can avoid the object.

Avoiding Obstacles Using Sensors

152

Now that you know the unit works, you'll want to mount the USB sensor on! your mobile
platform. In this case, I am going to mount the USB sonar sensor on my quadruped robot.

Make sure you plug one end of the USB cable into the sensor and the other end into the USB
hub connected to the BeagleBone Black.

Engage thrusters
With the HW all constructed and the sensor working, you can start communicating with your
USB sensor using the BeagleBone Black. You are going to create a simple Python program
that will read the value from the sensor. To do this—using Emacs as an editor—type emacs
sonar.py. A new file will be created called sonar.py. Then type the code shown in the
following screenshot:

Let's go through the code to see what is happening.

ff #!/usr/bin/python: This line simply makes this file available for us to execute
from the command line.

ff import serial: You also again import the serial library. This will allow us to
interface with the USB sonar sensor.

ff if __name__=="__main__": The main part of the program is then defined.

ff Ser=serial.Serial('/dev/ttyUSB0', 57600, timeout = 1): This
command sets up the serial port to use the /dev/ttyUSB0 device, which is the
sonar sensor, using a baud rate of 57600 and a timeout of 1.

ff x = ser.read(100): This command then reads the next hundred values from the
USB port.

ff print(x): This command then prints out the value.

Chapter 7

153

Once you have this file created, you can run the program and communicate with the device.
Do this by typing ./sonar.py, and the program will run. I have found that sometimes the
device returns no data when run for the first time, so don't be surprised if you print out no
values the first time you run your program. For the second time, you should receive a valid
return string. Here is my result after running the program:

The sensor is returning 064, which indicates a relative distance to a barrier in millimeters. If I
place a good reflector just a few inches in front of the sensor and run the program, I will get
the following result:

Avoiding Obstacles Using Sensors

154

Objective complete – mini debriefing
Now the robot can sense its environment, so you can avoid bumping into walls and
other barriers!

Using a servo to move a single
sensor

You now have your sensor, but if you want to sense in more than just one direction, you
could use several sensors, each mounted to a different side of the robot. However, there is
a way to use servos to move your sensor, which allows you to use a single sensor to sense in
several directions.

Prepare for lift off
The simplest way to avoid having to purchase and configure several sensors is to mount the
sensor on a single servo, then use a servo bracket to connect this assembly to the platform.
Using the sonar sensor, the assembly will look something like this:

Make sure you connect your servo to the servo controller; it can fit into any open connection.
I am connecting mine to my quadruped that has eight servos to control, so I have connected
mine to the eighth connection on the servo controller board. Here is an image:

Chapter 7

155

Engage thrusters
I'll assume you already have your sensor up and working and know how to read data. In
this section, you will add the ability to move the sensor by communicating with the servo
through the servo controller you configured in the last chapter.

For the program, you will begin with the robot.py program you created in Chapter 6, Making
the Unit Very Mobile - Controlling Legged Movement, as you are going to need to access the
servo controller. However, you may want to keep a copy of this program, just in case you want
to use it later. First go to the directory that holds the robot.py program; in my case I placed it
in the maestro_linux directory, so I would type cd ./maestro_linux from my log-in or
home directory. Now let's create a copy of this program by typing cp robot.py sense.py.

Avoiding Obstacles Using Sensors

156

You'll want to edit this program, so if you are using the Emacs editor, type emacs sense.
py. The program you want to create will look like this:

Let's walk through the code to see what it does. I will begin with the section that begins with
if __name__="__main__":, as everything above this comes to us from the robot.py
code and is covered in this previous chapter.

ff The robot=PololuMicroMaestro() line initializes the servo motor controller and
connects it to the proper USB port.

ff sensor=serial.Serial('/dev/ttyUSB0', 57600, timeout = 1) opens
a serial port that connects you to the USB sonar sensor at the /dev/ttyUSB0 port
and sets its parameters.

Chapter 7

157

ff You can now ask the servo to go to a specific position and then take a reading. In
this case, I am doing this for the servo positions at 65 degrees, 90 degrees, and 115
degrees. At each of these locations, you ask for a range reading. Notice that you
need to wait 2.5 seconds for the sensor to respond, based on the specifications of
the manufacturer for the device to deliver a stable reading.

Objective complete – mini debriefing
That's it! Now you can sense in front of you and to either side. Here is an example of what
might be displayed as a result of running the program:

Classified intel
If you are adding the sensor/servo combination to your wheeled vehicle, you'll need to add
the servo motor controller as well. The motor controllers, the servo controllers, and the USB
sonar or IR sensor can all coexist on the same BeagleBone Black. You'll need to merge the
dcmotor.py and the sense.py programs so that you can access each individual capability.

Avoiding Obstacles Using Sensors

158

Here is a listing of a possible program that does this:

In order to make this fit here, I have not included the #include serial and time, the
MotorControllerOne, and MotorControllerTwo classes from the dcmotor.py
file, and the PololuMicroMaestro class from the robot.py file. These would all need
to be included, and then this main program would move the robot and then sense the
environment around it. This would be a great starting point for your mobile robot code.

Chapter 7

159

Mission accomplished
Congratulations! You can now detect and avoid walls and other barriers to your robot. You
can also use these sensors to detect objects that you might want to find.

A challenge
One way to use these sensors is to use two sensors to actually "find" an object. This can
help your robot actually find the position of specific obstacles. How this is accomplished
is detailed on the maxbotix.com website at: http://www.maxbotix.com/documents/
MaxBotix_Ultrasonic_Sensors_Find_Direction_and_Distance.pdf. You have all
the knowledge you need to add this type of capability to your robot.

8
Going Truly Mobile –

Remote Control
of Your Robot

Based on the previous projects, you now have mobile robots that can move around, accept
commands, see, and even avoid obstacles. This project will teach you how to electronically
communicate with your robot without any wires.

Mission briefing
You're mobile, but you still need to use your LAN cable if you want to communicate
electronically with your project. In this project, you'll learn how to communicate without
wires, yet still remain in control of your robot.

Why is it awesome?
As you send your device out into the world, you may still want to communicate with it
electronically without connecting a cable. If you add this capability, you can change what
your mobile robot is doing without any physical contact, and still remain in complete control
of your project.

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Going Truly Mobile – Remote Control of Your Robot

162

Your objectives
In this project you will be:

ff Connecting the BeagleBone Black to a wireless USB keyboard

ff Using the keyboard to control your project

Mission checklist
In this project, you'll learn how to connect to your device wirelessly. There are several ways
to accomplish this. I'm going to show you how to do this with a standard USB wireless input
device. This will let you control your robot without running cables.

However, first you will probably want to purchase a small LCD display for your BeagleBone
Black. This will allow you to monitor what is going on with your project. In the initial projects
you used a separate computer monitor for this. But an HDMI or DVI monitor is just too big and
not really designed for mobile use. Fortunately, there are several inexpensive choices for small
LCDs that connect right to the BeagleBone Black. The following image shows a device I have
used for some of my projects:

The LCD shown in the preceding image is from a company called CircuitCo. It's also available
on Amazon and other online electronics stores, so you should be able to get it almost
anywhere. There are several versions of LCD that are made for the BeagleBone Black. This
one is 3.5 inches and has a display resolution of 320 x 240. There is another version that is
4.5 inches and has a display resolution of 480 x 270. The following image shows a larger LCD,
made by 4D Systems:

Chapter 8

163

The largest version is of 7 inches and has a display resolution of 800 x 480. I personally like
the smaller versions for placement on my robots.

The board fits right on top of the BeagleBone Black. The following image shows an underside
view of the LCD:

Going Truly Mobile – Remote Control of Your Robot

164

These pins are pushed right into the header connectors of the BeagleBone Black with the
LCD on the top. The following image shows a side view of the BeagleBone Black and LCD:

Now when you program your board, you can see the results right on the robotic platform. No
extra programming is needed; the BeagleBone Ubuntu release will sense that the LCD screen
is there and boot with the screen acting as a display. After the system boots, it will look
similar to what is shown in the following image:

Chapter 8

165

If you connect a USB keyboard to the BeagleBone Black and log in and then type startx at
the prompt, you'll get your Xfce4 windowing system. It should look similar to what is shown
in the following image:

Now that you can display what is going on inside the BeagleBone Black, you need to choose
which wireless input device to use.

A standard 2.4 GHz wireless keyboard is shown in the following image:

The preceding image displays a Logitech keyboard. Logitech generally makes a very reliable
keyboard, and this connects well to the BeagleBone Black. This keyboard is available online
through Amazon, and at most electronics or computer stores. You'll notice that this version
has a built-in mouse.

Going Truly Mobile – Remote Control of Your Robot

166

Another choice is a small keyboard that looks more like a game controller. It will make your
projects look amazing and will make it easier to control:

The preceding image shows a 2.4 GHz wireless keyboard by HausBell which is small, about
the size of a game controller. It is relatively inexpensive, and is again sold online by Amazon.

There are several choices we could make for wireless technology in communicating with the
BeagleBone Black. Bluetooth is quite popular, and works well, but comes with the added
complexity of having to pair the device with the Bluetooth USB dongle and the system. The
2.4 GHz wireless technology comes with a keyboard and wireless USB receiver already paired
so the device only works with the USB dongle that ships with the device. And the system
automatically recognizes the device as long as the USB receiver is plugged into the USB port.

The frequency range utilized by 2.4 GHz wireless devices is the same as that of many 2.4 GHz
wireless LAN devices, although they do not use the same modulation or protocol that is used
by standard 2.4 GHz wireless LAN. Rather they use a proprietary modulation and protocol
that is specific to the device and the company that manufactures the device.

While each device is different, most use the same overall approach, where they define a
number of different channels, or small frequency ranges, inside the overall 2.4 GHz range.
The keyboard communicates with the USB receiver on one of these frequencies. However,
if either the keyboard or USB receiver sense that some other device is transmitting on that
frequency, the devices will move to a different channel to try to avoid the interference.

The transmissions between the wireless keyboard and USB receiver are encrypted, so no device
except the paired keyboard and USB receiver can understand the messages that are being
sent between the two devices. The range of the keyboard/receiver pair is dependent upon the
amount of power that both use for transmission, the higher the power the longer the range.
Unfortunately, the higher the power the less time the batteries in the wireless device last. Most
wireless keyboards are designed to work for up to 10 meters, or around 30 feet.

Chapter 8

167

Connecting the BeagleBone Black to
a wireless USB keyboard

You've been able to control your projects using a LAN connection, but you don't want to
always have your projects tethered in this manner. In this section I'll show you how to
connect via a wireless keyboard.

Prepare for lift off
Break out your USB keyboard. It should come with a USB dongle. Plug the USB dongle
into the USB hub, and plug the hub into the BeagleBone Black USB port. If you are using a
standard USB 2.4 GHz wireless keyboard, the entire system should look similar to what is
shown in the following image:

You can also use one of the 2.4 GHz wireless keyboards that look more like a gaming
controller in the same manner.

Going Truly Mobile – Remote Control of Your Robot

168

Engage thrusters
Apply power to the USB hub and the BeagleBone Black. After some time, the unit should
power on to display the log-in prompt. As you type in the username you should see the
characters, similar to what is shown in the following image:

After you type the username and password, you can type startx and start up the Xfce
window system. Now you should be able to also use the mouse to move around the screen,
as shown in the following image:

Objective complete – mini debriefing
You now have keyboard and mouse inputs. Next I'll show you how to accept the keystrokes
into a program to control the robot.

Chapter 8

169

Using the keyboard to control your
project

Now the keyboard is connected, let's figure out how to accept commands on the BeagleBone
Black.

Prepare for lift off
You can now enter commands wirelessly. The next step is to create a program that can take
these commands and then have your project execute them. There are a couple of choices
here and I'll give you examples of both. The first is simply to include the command interface in
your program. Let's take the example of the program you wrote to move your wheeled robot,
robot.py. If you like you can copy that program using cp robot.py remote.py. The
following screenshot shows a listing of the current program in the area you want to change:

Going Truly Mobile – Remote Control of Your Robot

170

Engage thrusters
In order to add user control, you need two new programming constructs: the while loop
and the if statement. Let's add them to the program, and then I'll explain what they do.
The following screenshot shows a listing of the area of the code you are going to change:

You will edit your program by making the following changes. Add the following code just
below the if __name__="__main__" statement:

1.	 var = 'n': This will define a variable named var, which will be of type character,
which you will use in your program to get the input from the user.

2.	 While var != 'q': This will put your program in a loop. This loop will repeat until
you, or the user, enters the letter q.

3.	 var – raw_input(">"): This will get the character value from the user.

Chapter 8

171

4.	 If var == '<': This checks the value that you got from the user. If it is a <
character, the robot will turn left by running the right DC motor for half a second.
(You will need to determine how much time should be utilized to run the right DC
motor for a left turn. The actual time value, .5 in this case, may need to be higher or
lower.)

5.	 Type the next few lines of code, which will send a speed command to the motor,
wait for 0.5 seconds, and then send a command for the motor to stop.

6.	 If var == '>': This checks the value that you got from the user. If it is a >
character, the robot will turn right by running the left DC motor for half a second.
(You will need to determine for how much time to run the left DC motor for a right
turn. The actual time value, .5 in this case, may need to be higher or lower.)

7.	 Type the next few lines of code, which will send a speed command to the motor,
wait for 0.5 seconds, and then send a command for the motor to stop.

8.	 If var == 'f': This checks the value that you got from the user. If it is an f
character, the robot will run forward by running the right and left DC motors for half
a second. (You will need to determine the speed to set each motor for a straight
forward path.)

9.	 Type the next few lines of code, which will send a speed command to both the
motors, wait for 0.5 seconds, and then send a command for both motors to stop.

10.	 If var == 'r': This checks the value that you got from the user. If it is an r
character, the robot will run backward by running the right and left DC motors for
half a second. (You will need to determine the speed to set each motor for a straight
backward path.)

11.	 Type the next few lines of code, which will send a speed command to both the
motors, wait for 0.5 seconds, and then send a command for both motors to stop.

Going Truly Mobile – Remote Control of Your Robot

172

Once you have edited the program, save it and make it executable by typing chmod +x
remote.py. Now you can run the program, but you must run it by typing the command using
the wireless keyboard. If you are not yet logged in to the BeagleBone Black directly, make sure
you can see the LCD screen and log in using the wireless keyboard. You can now disconnect
the LAN cable; you will be able to communicate with the BeagleBone Black via the wireless
keyboard. The system should look similar to what is shown in the following image:

Using the wireless keyboard and LCD screen, change the directory to the one that holds the
remote.py program. In my case this file was in the /home/ubuntu/smc_linux directory,
so I used the cd smc_linux command from my home directory. Now you can run the
program by typing ./remote.py. The screen will display a prompt, and each time you type
the appropriate command (<, >, f, or r) and press Enter, your robot should move. You need
to be advised that the range of this technology is at best around 30 feet, so don't let your
robot get too far away.

Objective complete – mini debriefing
Now you can move your robot around using the wireless keyboard! You can even take your
robot outside. You don't need the LAN cable to run your programs because you can run them
using the LCD display and keyboard.

Chapter 8

173

Classified intel
There is one more change you can make so that you don't have to hit the Enter key after each
input character is typed. In order to make this work, you'll need to add some import commands
to your program and then add one function that can get a single character without pressing the
Enter key. The following screenshot shows the first change you'll need to make:

You'll need to add import tty, import sys, and import termios. These are all the
libraries that you'll need for your function to work. The following screenshot shows the
function itself, and how you're going to use it:

Going Truly Mobile – Remote Control of Your Robot

174

Copy the code from function def getch(): into your program. I'm not going to explain it
in detail, just know that it gets a single character without the need of pressing the Enter key
after each keystroke. The print statement in the function is optional; I like to use it to map
the different keys of my keyboard. Then instead of using var = raw_input(">") to get
the character, use var = getch().

The program changes your terminal settings so when you run your program,
you can no longer stop the program by typing Ctrl + C. You'll need to type q,
and your terminal setting will be restored.

Mission accomplished
Congratulations! Now you can take your robot out into the big wide world. You can even use
the LCD and keyboard to make changes to your program, although the smaller screen size
makes this a bit difficult.

A challenge
Many users are comfortable using gaming keypads. There are several that come with a
wireless connection. You could try connecting one of these to your robot if you want it to
seem more like a real video game. In my system, I actually used the wireless keypad from
HausBell and mapped the arrow keys at the top of the keyboard to tell my robot to go
forward, backward, left, and right. I figured out which keystrokes these translated to by
simply running my program and looking at the print statement in the program.

9
Using a GPS Receiver
to Locate Your Robot

Based on the previous projects, you now have mobile robots that can move around, accept
commands, see, and even avoid obstacles. This project will help you locate your robot while
it moves, which can be useful for a robot that is fully autonomous.

Mission briefing
The robot is mobile, but let's not let it get lost. You're going to add a GPS receiver so that you
can always know where you are.

Why is it awesome?
As you let your device free, you may not only want it to know where it is, but also to have
a way of finding out if it has made it to the desired location. One of the coolest things to
connect to the robot is a GPS location device. In this project, I'll show you how to connect
a GPS receiver to your robot and then use it to move in the correct direction.

Your objectives
In this project we will cover the following:

ff Connecting the BeagleBone Black to a GPS device

ff Accessing the GPS programmatically and determining how to move to a location

Using a GPS Receiver to Locate Your Robot

176

Mission checklist
In this project, you'll need a GPS device. There are a lot of options, and they come with many
different interfaces, but because we want to avoid using a soldering iron or other complex
connection processes, we're going to choose one with a USB interface. Here is an image of
a device I have used for some of my projects:

The model number is ND-100S from GlobalSat. It is small, inexpensive, and it supports
Windows, Apple, and Linux, so our system should be able to interface with it. It is available
on Amazon and other online electronics stores, so you should be able to get it almost
anywhere. However, it does not have the sensitivity of some GPS devices. So if you will be
using your robot in buildings or other locations that might stifle GPS signals, you should look
for devices that are more sensitive.

Connecting the BeagleBone Black to
a GPS device

Unpack your GPS device; it is time to get started.

Prepare for lift off
Before we get started, let me first give you a brief tutorial on GPS. GPS, which stands for
Global Positioning System, is a system of satellites that transmits signals. GPS devices use
these signals to calculate a position. There are a total of 24 satellites transmitting signals all
around the earth at any given moment, but your device can only see the signal from a much
smaller set of satellites.

Chapter 9

177

Each of these satellites transmits a very accurate time signal that your device can receive
and interpret. It receives the time signal from each of these satellites, and then based on
the delay, the time it takes the signal to reach the device, it calculates the receiver's position
based on a procedure called triangulation. The following two diagrams illustrate how the
device uses the delay differences from three satellites to calculate its position:

GPS Device

T1

T2

T3

The GPS device is able to detect the three signals, and the time delays associated with
receiving these signals. In the following diagram the device is at a different location, and the
time delays associated with the three signals has changed:

GPS Device

T1

T2

T3

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Using a GPS Receiver to Locate Your Robot

178

The time delays of the signals T1, T2, and T3 can provide the GPS with an absolute position
using a mathematical process called triangulation. Since the position of each satellite is
known, the amount of time that the signal takes to reach the GPS device is also a measure
of the distance between that satellite and the GPS device. To simplify, let's show an example
in two dimensions. If the GPS device knows one distance to a satellite based on the amount
of time delay, we could draw a circle around the satellite at that distance and know that our
GPS device is on that sphere, as shown in this diagram:

T1 = distance to edge
of circle

If we have two satellite signals and know the distance between the two, we can draw two
circles as shown in the following diagram:

T1 = distance
to edge of

circle

T2 = distance
to edge of

circle

Chapter 9

179

However, since we know that we can only be at points on the circle, we must be at one of
the two points that are on both circles. Adding an additional satellite would eliminate one
of these two points, providing us with an exact location. We need more satellites if we are
going to do this in all the three dimensions.

Now, it is time to connect the device. As a first step, I suggest you connect the dongle to your
PC. This will let you know the unit works and help you understand the device a little better.
Then you'll connect it to the BeagleBone Black.

In order to install the system on your PC, insert the CD and run the setup program. You
should see something like this:

Using a GPS Receiver to Locate Your Robot

180

Click on both the Install Driver and ND-100S Application buttons and follow the default
instruction procedures. When you have installed both the drivers and the application, you
should be able to plug the GPS device into the USB port on your PC. A blue light at the end of
the device should indicate that the device has been plugged in. The system will recognize the
device, install the proper drivers, and you will have access to your device (this may take a few
minutes). To ensure that the device has been installed, check your Devices and Printers start
menu selection (if running Windows 7). You should see this:

Chapter 9

181

Once the device is installed, you can also run the application that comes on the CD-ROM.
On startup it should look something like this:

Now press the Connect selection button on the top-left of the screen. It should now look
like this:

Using a GPS Receiver to Locate Your Robot

182

Unfortunately, if you are in a building or in a place where receiving information from the GPS
satellites is difficult, the device may struggle to find its position. If you want to know that
the system is working, even though it may struggle to find signals, select the Terminal tab
selection in the lower-left corner. You should see something like this:

Notice that the lower-left window indicates the device is trying to find its location. Initially
the unit in my office was unable to locate the satellites, not surprising for a building designed
to restrict the transmission of signals into and out of the building. Following the same
procedure on my laptop shows the following:

Chapter 9

183

You'll notice that the blue LED on the end of the GPS is flashing. Now we have a position. If I
select the Terminal tab, it shows the raw data coming back from the GPS:

We'll use that raw data in our next section to plan our path to other positions. So, in an
environment where GPS data is available, the unit is able to sync up and show your position.
The next step will be to hook it to your BeagleBone Black robot.

Engage thrusters
First, connect the GPS unit by plugging it into one of the free USB ports on the USB hub.
Once it is plugged in, and the unit is rebooted, type lsusb and you should see the following:

Using a GPS Receiver to Locate Your Robot

184

The device is shown as Prolific Technology, Inc. PL2303 Serial Port. Your
device is now connected to your BeagleBone Black.

Now create a simple Python program that will read the value from the GPS device. If you
are using Emacs as an editor, type emacs measgps.py. A new file will be created called
measgps.py. Then type the following code:

Let's go through the code to see what is happening.

1.	 #!/usr/bin/python: This line simply makes this file available for us to execute
from the command line.

2.	 import serial: We import the serial library. This will allow us to interface with
the USB GPS sensor.

3.	 if __name__=="__main__":: The main part of our program is then defined.

4.	 ser = serial.Serial('/dev/ttyUSB0', 4800, timeout = 1): This
command sets up the serial port to use the /dev/ttyUSB0 device, which is our GPS
sensor using a baud rate of 4800 and a timeout of 1.

5.	 x = ser.read(1200): This command then reads in a set of values from the
USB port. In this case, we read 1200 bytes, which will include a fairly full set
of our GPS data.

Chapter 9

185

6.	 print x: This final command then prints out the value.

Once you have this file created, you can run the program and talk to the device. Do this
by typing python measgps.py and the program will run. You should see something
like the following:

The device is providing raw readings back to you, which is a good sign. Unfortunately there
isn't much good data here, as the unit again is inside. How do we know this? Look at one of
the lines that starts with $GPRMC. This line should tell us our current latitude and longitude
values. The GPRS is reporting:

$GPRMC,160119.170,V,,,,,,,011013,,,N*

Using a GPS Receiver to Locate Your Robot

186

This line of data should take the following form, with each field separated by a comma:

0 1 2 3 4 5 6

$GPRMC 220516 A 5133.82 N 00042.24 W

7 8 9 10 11 12

173.8 231.8 130694 004.2 W *7

And here is the table providing explanation of each of these fields:

Field Value Explanation

1 220516 Timestamp

2 A Validity: A (OK), V (Invalid)

3 5133.82 Current latitude

4 N North or south

5 00042.24 Current longitude

6 W East or west

7 173.8 Speed in knots with which the device
is moving

8 3 Course: The angle direction in which
the device is moving

9 130694 Datestamp

10 0004.2 Magnetic variation: Variation from
magnetic and true north

11 W East or west

12 *70 Checksum

Chapter 9

187

In our case, field 2 is reporting V, or that the unit cannot find enough satellites to get a
position. Taking the unit outside, we can get something like this on our measgps.py:

Notice that that $GPRMC line now reads this:

$GPRMC,020740.000,A,4349.1426,N,11146.1064,W,1.82,214.11,021013,,,A*
7B

Our values are now:

Field Value Explanation

1 020740.000 Timestamp

2 A Validity: A (OK), V (Invalid)

3 4349.1426 Current latitude

4 N North or south

5 11146.1064 Current longitude

6 W East or west

7 1.82 Speed in knots with which the device is moving

8 214.11 Course: The angle direction in which the device is
moving

9 021013 Datestamp

Using a GPS Receiver to Locate Your Robot

188

Field Value Explanation

10 Magnetic variation: Variation from magnetic and true
north

11 East or west

12 *7B Checksum

Objective complete – mini debriefing
Now you have some indication of where you are; however, it is in raw form that may not
mean much. In the next section, we will figure out how to do something with these readings.

Accessing the GPS programmatically
and determining how to move to a
location

Now that you can access your GPS device, let's work on accessing the data programmatically.

Prepare for lift off
Your project should now have the GPS connected and have access to querying the data via
the serial port. In this section, you will create a program to use this data to discover where
you are, and then you can determine what to do with that information.

Engage thrusters
If you completed the last section, you should be able to receive the raw data from the GPS
unit. Now you want to be able to take this data and do something with it, for example, find
your current location and altitude and then decide if your target location is to the west, east,
north, or south.

First, get the information out of the raw data. As noted earlier, our position and speed is in the
$GPMRC output of our GPS. First, write a program to simply parse out a couple of pieces of info
from that data. So open a new file (you can name it location.py) and edit it as follows:

Chapter 9

189

Let's go through the code to see what is happening.

1.	 The#!/usr/bin/python: As always, this line simply makes this file available for
you to execute from the command line.

2.	 import serial: You again import the serial library. This will allow you to interface
with the USB GPS sensor.

3.	 if __name__=="__main__":: The main part of your program is then defined.

4.	 ser = serial.Serial('/dev/ttyUSB0', 4800, timeout = 1): The first
command sets up the serial port to use the /dev/ttyUSB0 device, which is your
GPS sensor using a baud rate of 4800 and a timeout of 1.

5.	 x = ser.read(500): This command then reads in a set of values from the USB port.
In this case, you read 500 values, which will include a fairly full set of your GPS data.

6.	 pos1 = x.find("$GPRMC"): This will find the first occurrence of $GPRMC and
set the value of pos1 to that position. In this case, you want to isolate the $GPRMC
response line.

7.	 pos2 = x.find("\n", pos1): This will find the end of this line.

8.	 loc = x[pos1:pos2]: The variable loc will now hold the line with all the
information you are interested.

9.	 data = loc.split(','): This will take your comma separated line and break it
into an array of values.

Using a GPS Receiver to Locate Your Robot

190

10.	 if data[2] == 'V':: You now check to see if the data is valid. If not, the next
line simply prints out that you did not find a valid location.

11.	 else:: If the data is valid, the next few lines print out the various pieces of data.

Here is a screenshot showing the results when my device was able to find its location:

Once you have the data, you can do some interesting things with it. For example, you might
want to figure out the distance and direction to another waypoint. There is a piece of code at
http://code.activestate.com/recipes/577594-GPS-distance-and-bearing-
between-two-GPS-points/ that you can use to find the distance and bearing to other
waypoints based on your current location. You can easily add this code to your location.
py file to update your robot on the distance and bearing to other waypoints.

Objective complete – mini debriefing
Now your robot knows where it is and the direction it needs to go to get to other locations!

Chapter 9

191

Classified intel
There is another way to configure your GPS device that may make it a bit easier to access
the data from other programs. It is a set of functionality held in the gpsd library. To install
this capability, type sudo apt-get install gpsd gpsd-clients, and this will install
the gpsd SW. This SW works by starting a background program (called a daemon) that
communicates with your GPS device. We can then just query the program to get the data. To
make sure this works, type cgps, and a program that was installed with the gpsd library will
open, and you should see this:

Using a GPS Receiver to Locate Your Robot

192

This displays both the formatted data and some of the raw data that is coming from the GPS
sensor. We can also access this information from a program. To do this, edit a new file called
gpsd.py as shown in the following screenshot:

Here are the details of your code:

1.	 #!/usr/bin/python: As always, the first line simply makes this file available for
you to execute from the command line.

2.	 import gps: In this case you import the GPS library. This will allow you to access
the gpsd functionality.

3.	 session = gps.gps("localhost", "2947"): This opens a communication
path between the gpsd functionality and our program. This opens port 2947,
assigned to the gpsd functionality, on the local host.

4.	 session.stream(GPS.WATCH_ENABLE | GPS.WATCH_NEWSTYLE): Tells the
system to look for new GPS data as it becomes available.

5.	 while True:: This simply loops and processes information until you ask the system
to stop (by typing Ctrl + C).

6.	 report = session.next(): When a report is ready it goes into the
variable report.

7.	 if report['class'] == 'TPV':: Checks to see if the report will give you the
type of report that you need.

Chapter 9

193

8.	 if hasattr(report, 'time'):: Makes sure that report holds time data.

9.	 print report.time: Prints out the time data. I use this in my example because
it is always returned, even if the GPS is not able to see enough satellites to return
position data. To see other possible attributes, see www.catb.org/gpsd/gpsd_
json.html for details.

Once you have created the program, you can run it by typing python gpsd.py. This is
a possible output of running the program:

Mission accomplished
Congratulations! Your robot can now get around without getting lost. You can use the info to
plan routes to different waypoints and track where your robot has been.

A challenge
One of the ways to display positional information is to use a graphical display including
a map of your current position. There are several map applications that can interface
with your GPS to indicate your location on a map. Here is an excellent tutorial on this:
https://www.sparkfun.com/tutorials/403. You won't need to execute the HW
configuration part of the tutorial, but will be able to start with the section Read a GPS
and plot position with Python.

10
System Dynamics

Through the previous chapters we've spent time talking a lot about individual functionality
that we can add to our robotic projects. In this chapter, we'll talk about how to integrate
these different parts into a single system.

Mission briefing
We've spent lot of time on individual functionality, and your robotic projects now have lots
of functionality that we can add to our projects. This chapter will bring all of these parts
together into a framework that allows the different parts to work together.

Why is it awesome?
You don't want the robot to just walk, talk, or see. You want it to do all of these in a
coordinated package. In this chapter, you'll learn how to programmatically connect all of
these individual capabilities and make your projects seem intelligent.

Your objectives
In this chapter, we will:

ff Create a general control structure so that different capabilities can work together
through system calls

System Dynamics

196

Mission checklist
Finally we're done purchasing the HW. In this chapter, we'll be adding functionality via SW.
You'll need ample storage space for an array of new SW. First, let's check how much space
you have on your memory card. You should install discus: a program that will let you see how
much disk space you have used and how much is available for new programs.

To do this, type sudo apt-get install discus. This will install the discus application.
Now run the program by typing discus. You should get something similar to the following
screenshot:

Notice that at this point my default drive only has 1.73 GB. The card I have is an 8 GB
card, so how do I access the rest? I've already laid out the steps in Chapter 4, Allowing the
BeagleBone Black to See, in the section on installing OpenCV. After I followed that set of
instructions, I now see this:

Chapter 10

197

I now have a little over 7 GB of space to add capability. You can also use the command df –h
to see this same information.

Downloading the example code and colored images

You can download the example code and colored images for this book you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Creating a general control structure
so capabilities can communicate

Now that you have a mobile robot, you want to coordinate all of its different abilities. Let's
start with the simplest approach: using a single control program that can call other programs
and enable all the capabilities.

Prepare for lift off
You've already done this once. In Chapter 3, Providing Speech Input and Output, you edited
the continuous.c code to allow it to call other programs to execute functionality. Here
is the code that we used, found in the /home/ubuntu/pocketsphinx-0.8/programs/
src/ directory.

System Dynamics

198

The functionality that is important to us is the system("espeak \"good
bye"\"");"\""); line of code. When you use the system function call, the program
actually calls a different program, in this case the espeak program, and passes it to the good
bye parameter so that the words good and bye come out of the speaker.

Here is another example, this time from Chapter 5, Making the Unit Mobile – Controlling
Wheeled Movement, when we wanted to command our robot to move:

In this case, if you say forward to your robot, it will execute two programs. The first
program you call is the espeak program with the parameter moving robot, and these
words should then come out of the speaker on the robot. The second program is the
dcmotor.py program, which should include the commands to move the robot forward.

Chapter 10

199

I am now going to include an example in Python; it is my preferred language. I am going to
use my wheeled robot:

It has a camera and is also able to communicate via a speaker. I control it via my wireless
keyboard. I want to add the functionality to follow a colored ball, turn as the ball goes right
or left, and tell me when it is turning.

You also need to make sure all of your devices are available to your programs. To do
this, you'll need to make sure your USB camera as well as the two DC motor controllers
are connected. To connect the camera, follow the steps given in Chapter 4, Allowing the
BeagleBone Black to See, in the section Connecting the USB Camera to the BeagleBone Black
and viewing the Images. It works best to connect the USB camera first before connecting any
other USB devices.

After the camera is up and running, check that both motor controllers are available to the
system. To do this, type cd /home/ubuntu/scm_linux and then type .SmcCmd –list.
You should see something like this:

System Dynamics

200

Both DC motor controllers are available. The numbers are the serial numbers of each
individual motor; you can use them to send commands to just one motor controller. For
example, you may need to send the resume command to the motors. To do this type as
shown in the following screenshot:

I am going to involve three different programs. First, I am going to create a program that will
find out if the ball is to the right or left. This is going to be my main control program. I am also
going to create a program that moves my robot approximately 45 degrees to the right-hand
side and another that moves my robot 45 degrees to the left-hand side. I am going to keep
these very simple, and you might be tempted to just put them all in the same source file.
But as the complexity of each of this program grows, it will make more sense for them to be
separate, so this is a good starting point for your robotic code. Also, if you want to use the code
in another project, or want to share the code, this sort of separation helps.

Engage thrusters
You are going to create three programs for this project. In order to keep this organized, I
created a new directory in my home directory by typing mkdir robot in my home directory.
I will now put all my files in this directory.

The next step is to create two files that can move your robot: one to the left-hand side, the
other to the right-hand side. To do this, you will create two copies of the dcmotor.py code
you created in Chapter 5, Making the Unit Mobile – Controlling Wheeled Movement, in your
robot directory. If you have created that file in your home directory, type cp dcmotor.
py ./robot/move_left.py cp dcmotor.py ./robot/move_right.py. Now you'll
edit those, changing two numbers in the if __name__=="____=="__main__":__":
command. Here is the edit to the move_left.py file:

Chapter 10

201

I'm not going to explain the details of the code; it is already detailed in Chapter 5, Making
the Unit Mobile – Controlling Wheeled Movement. The numbers that I changed were the
motorx.setSpeed numbers; using 2000 for both motors turns my robot to the left-hand
side. Additionally, I changed the time.sleep numbers to .1, so the robot will respond
more quickly. The .1 will delay the execution of the program by one-tenth of a second. You
will also need to edit moveright.py similarly:

System Dynamics

202

This time the setSpeed numbers are both -2000, turning my robot to the right-hand side.

The final step is to create our main control program. Let's call it follow.py. Open this file
with your editor; if using Emacs type emacs follow.py:

Let's look at this code:

1.	 #!/usr/bin/python: The first line allows your program to be run outside the
Python environment. You'll use that later when you want to execute your code using
autostart or using voice commands.

2.	 import cv2: The next line imports the OpenCV library. You need this to process
the images.

3.	 import numpy: The next line imports the numpy library. This allows Python to
work with the special arrays associated with OpenCV.

4.	 from subprocess import call: This library will allow you to call other
programs from within your program.

Chapter 10

203

5.	 cap = cv2.VideoCapture(0): This line associates our program with the
webcam.

6.	 while True:: Keep doing the loop; you'll only break if you press the Esc key in the
image window.

7.	 ret,img = cap.read(): This line captures an image and moves it into the img
array.

8.	 img = cv2.blur(img,(3,3)): This line smooths the images, getting rid of some
of the random noise normally associated with images.

9.	 hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV): This OpenCV function
converts the image file to the type you need to process it in a different color space.

10.	 threshold = cv2.inRange(hsv,numpy.array((0, 155, 0)), numpy.
array((255, 255,255))): This creates a new image matrix, only allowing
colors in a specific range. The (0,155,0) to (255,255,255) values let only green
objects (the middle value has to be greater than 155) through to the threshold
image.

11.	 contours, num = cv2.findContours(threshold,cv2.RETR_LIST,cv2.
CHAIN_APPROX_SIMPLE): This finds the contours in the black and white image.
These are places where there is a set of the same colors.

12.	 max_area = 0, cx = 0, cy = 0: These are all simple initializers.

13.	 for cnt in contours:: This section finds the biggest blob of colors; hopefully
this will be the ball.

14.	 if max_area != 0:: If no set is found, we don't want to try to move to the
proper cx, and cy pairs.

15.	 M = cv2.moments(max_cnt): Find the moment (shape) associated with the
biggest set of color.

16.	 cx,cy = int(M['m10']/M['m00']), int(M['m01']/M['m00']): Find the
center of the biggest set of color.

17.	 cv2.circle(img,(cx,cy),5,255,-1): Draw a small blue circle on the image at
the center of the biggest set of color.

18.	 cv2.imshow("("Ball Tracker",", img): Show the image on the screen.

19.	 if cx > 280:
 call(["./(["./move_right.py"])"]): If the x value of the biggest set of
color is greater than 280, then call the move_right.py program in this directory.
This will move the robot to the right-hand side.

20.	 if cx < 20 and cx > 0:
 call(["./(["./move_left.py"])"]): If the x value of the biggest set of
color is less than 20, but greater than 0, then call the move_left.py program in
this directory. This will move the robot to the left-hand side.

System Dynamics

204

21.	 if cv2.waitKey(10) == 27:: Stop the entire program if the Esc key is pressed
while in the display window.

Objective complete – mini debriefing
Now you can run the program by typing sudo ./follow.py. The following window should
be displayed:

The blue dot indicates that the program is following the green ball. As the green ball is
moved towards the left edge, the robot should also rotate slightly left. As the green ball is
moved toward the right edge, the robot should also rotate slightly right.

Classified intel
You can change the color that you are looking for by changing the line threshold = cv2.
inRange(hsv,numpy.array((0, 155, 0)), numpy.array((255, 255,255))).

Two other color possibilities are:

ff Yellow: threshold = cv2.inRange(hsv,numpy.array((20, 100, 100)),
numpy.array((30, 255,255)))

ff Blue: threshold = cv2.inRange(hsv,numpy.array((100, 100, 100)),
numpy.array((120, 255,255)))

Chapter 10

205

With OpenCV it is also possible to do motion detection. There are a couple of good tutorials
on how to do this with OpenCV. One simple example is at http://www.steinm.com/
blog/motion-detection-webcam-python-opencv-differential-images/.
Another example, a bit more complex but more elegant, is at http://stackoverflow.
com/questions/3374828/how-do-i-track-motion-using-opencv-in-python.

When using motion detection, if you roll the ball across the screen, you should see the
following output on the webcam (using the code from the second tutorial):

You can then use it to move the robot to follow the motion.

Mission accomplished
Now you can coordinate complex functionality for your robot. Your robot can walk, talk, see,
hear, and even sense its environment, all at the same time.

System Dynamics

206

A challenge
As you can see, communicating between different aspects of our project can be challenging.
You are probably used to using an operating system that provides you with much of the basic
functionality that you need for your computer use. In this section I'm going to introduce you
to a special operating system that is designed specifically for use with robotics projects, the
Robot Operating System (ROS). This operating system sits on top of Linux and provides some
interesting functionality.

ROS is fortunately free and open source. It is a very complex set of functionalities, but if
you spend some time learning it, you can start using some of the most comprehensive
functionality being developed in robotics research today.

To install ROS for the BeagleBone Black, go to http://wiki.ros.org/groovy/
Installation/UbuntuARM. This gives you a step-by-step set of instructions to download
and install the ROS onto your BeagleBone Black. Then also select Ubuntu on ARM, which is
the architecture of your BeagleBone Black, and then select the appropriate version for the
version of Ubuntu you are running. If you are using Ubuntu 12.04, for example, you'll want
to select the 12.04 Precise armhf directions. Armhf is the architecture we are using, the ARM
processor and hard float, which is what our processor supports.

Once installed, you can go through the tutorials; they will introduce you to the features of
ROS and how to use it in our robotics projects. There are some limitations to using ROS on the
BeagleBone Black; some of the nice graphical tools for monitoring and controlling the system
are not available. However, it does provide a systematic way of configuring and communicating
between multiple features of your robot running in different programs. It even comes with
some programs that implement some interesting vision and motor control capabilities.

11
By Land, Sea, and Air

You've built robots that can navigate on land; now let's look at some possibilities for utilizing
the tools to build some robots that dazzle the imagination.

Mission briefing
We've built robots that can navigate on land; now let's look at the possibilities for building
robots that can navigate in the air or on the water. By now I hope you are comfortable
accessing the USB control channels and talking with servo controllers and other devices
that can communicate over USB. Instead of leading you through each step, in this chapter
I'm going to point you in the right direction and allow you to explore a bit. I'll try to give you
some examples using some of the projects that are going on around the Internet. I hope you
are now ready to explore a bit on your own, for these projects can be quite complex and I'm
not going to lead you through each step.

Why is it awesome?
You don't want to limit your robotic possibilities to just walking or rolling. You'll want your
robot to fly, or sail, or swim. In this chapter, you'll see how you can use the capabilities you
have already mastered in projects that defy gravity, explore the open sea, or navigate below
the open sea.

Your objectives
In this chapter we will be:

ff Using the BeagleBone Black in sailing robots
ff Using the BeagleBone Black in flying robots
ff Using the BeagleBone Black in submarine robots

By Land, Sea, and Air

208

Downloading the example code and colored images

You can download the example code files and colored images for this Packt book
you have purchased from your account at http://www.packtpub.com. If
you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Mission checklist
We need to add to our robotics HW in order to complete these projects. Since the HW is
different for each of these projects, I'll introduce the HW in each individual section.

Using the BeagleBone Black in
sailing robots

Now that you've created platforms that can move on land, let's turn to a completely different
type of mobile platform—one that can sail. In this section, you'll discover how to use the
BeagleBone Black to control your sail boat.

Prepare for lift off
Fortunately, sailing on the water is about as simple as walking on land. First, however,
you need a sailing platform. The following image shows an RC sailing platform that can be
modified to accept control from the BeagleBone Black:

Chapter 11

209

In fact, many RC controller boats can be modified to add the BeagleBone Black. All you need
is space to put the processor, the battery, and any additional control circuitry. In this case,
the sailing platform has two controls: a rudder that is controlled by a servo and a second
servo that controls the position of the sail. These are shown in the following image:

To automate the control of the sail boat, you'll need your BeagleBone Black, a battery, and
a servo controller. The servo controller I would advise for this project is the little brother to
the servo controller you used in Chapter 5, Making the Unit Mobile – Controlling Wheeled
Movement. It is a six-servo controller made by Pololu, available at http://www.pololu.
com, and it looks similar to what is shown in the following image:

By Land, Sea, and Air

210

The advantage is that this servo controller is much smaller and fits in limited space. The only
challenge is creating a power connection to the device. Fortunately there is a cable that you
can purchase that makes these power connections available from a standard cable. The cable
you want is a USB to TTL serial/RS232 adapter cable. Make sure that the TTL end of the cable
has individual female connectors. You can get this cable at http://www.amazon.com, and
also at http://www.adafruit.com. An image of the cable is shown as follows:

The red and black wires will be power. Now this can be connected to the servo controller, as
shown in the following image:

Chapter 11

211

Engage thrusters
Once you have assembled your sail boat, you will need to first hook up the servo controller
to the servos on the boat. You should try to control the servos before installing all the
electronics inside the boat, similar to what is shown in the following image:

Just as in Chapter 5, Making the Unit Mobile – Controlling Wheeled Movement, you can use
the MaestroController SW to control the servo controller from your PC. When you are ready
to hook it up to the BeagleBone Black, you can start with the same Python program you used
in Chapter 5, Making the Unit Mobile – Controlling Wheeled Movement. You will probably
want to control the system without a wired connection, so you can use the principles that
you learned in Chapter 7, Avoiding Obstacles Using Sensors.

It may be a bit challenging if you are using the standard 2.4 GHz keyboard, or smaller 2.4
GHz controller. You can add a bit more distance by connecting via a more powerful 2 way
communications process. One possible solution is wireless LAN, unfortunately most lakes
or ponds won't have an open wireless network available. You could also set up your own
adhoc wireless network using a router connected to a laptop. Or many cell phones have the
ability to set up a wireless hot spot, which can create a wireless network so that you can
communicate remotely with your sailboat.

By Land, Sea, and Air

212

Another possible solution is to use ZigBee wireless devices to connect your sail boat to
a computer. An image of a ZigBee device, called the XBee, is shown as follows:

You'll need two of them and a USB shield for each. You can get these at a number of places,
including http://www.adafruit.com. The following image shows the device on the shield.

Now you can connect your computer and your BeagleBone Black via this wireless network.
The advantage is that it only carries communications to and from your sail boat and can have
a range of almost a mile using the right devices. Here is a website that provides an excellent
example of how to configure and have two computers talk over this type of dedicated wireless
link: http://www.examples.digi.com/get-started/basic-xbee-802-15-4-chat/.

Chapter 11

213

Objective complete – mini debriefing
Now you can sail your boat, controlling it all through an external keyboard or through a ZigBee
wireless network from your computer. If you want to fully automate your system, you could
add your GPS and then have your sailboat sail to different positions. One additional item you
might want to add for a fully automated system is a wind sensor. The following image shows
a wind sensor that is fairly inexpensive from http://www.moderndevices.com:

You can mount it to the mast if you'd like; I used a small piece of heavy-duty tape and
mounted it to the top of the mast, similar to what is shown in the following image:

By Land, Sea, and Air

214

To add this to your system, you'll also need a way to take the analog input from the sensor
and send it to the BeagleBone Black. You could try sending it to one of the GPIO analog input
pins on the BeagleBone Black. This can be a bit tricky to program, and the ADC inputs on
the board can only handle up to 1.8 Volts. If you are a bit nervous about connecting directly
into the GPIO, the PhidgetInterfaceKit 2/2/2 from http://www.phidgets.com can help.
It will actually take the analog and convert it to a reading that you can access via USB. The
following image is how this device appears:

The following image shows the wind sensor connected to the converter:

Chapter 11

215

A wiring diagram is as follows:

Wind Sensor Phidgets USB
1 2 3

G
N

D
 +

V
O

ut
 R

V
Tm

p

Now you can access the wind speed from the USB connection the same way as you received
data from the other USB devices that you have already used. The Phidgets website will lead
you through the download process; I chose Python as my language, and downloaded the
appropriate libraries and example code. When I run the program I get the following output
when blowing on the sensor:

Now that you have a way to measure your location, and a way to measure the wind, you can
use your BeagleBone Black to sail all by itself. You'll need to be careful with waterproofing,
especially when sailing in a heavy wind. Think about attaching the hatch that covers
the electronics securely; I added small screws and tabs to hold the hatch and also some
waterproof sealant.

By Land, Sea, and Air

216

Using the BeagleBone Black in flying
robots

You've now built robots that can move around on a wheeled structure, and robots that
have legs, and robots that can sail. You can also build robots that can fly, relying on the
BeagleBone Black to control their flight. There are several possible ways to incorporate the
BeagleBone Black into a flying robotic project, but the most straightforward way is to add it
to a quadcopter project.

Quadcopters are a unique subset of flying platforms that have become very popular in
the last few years. They are a flying platform that utilizes the same vertical lift concept
as helicopters; however, they employ not one but four motor/propeller combinations to
provide an enhanced level of stability. The following image displays such a platform:

Chapter 11

217

The quadcopter has two sets of counter-rotating propellers, which simply means that two
of the propellers rotate one way; the other two rotate the other way to provide thrust in
the same direction. This provides a platform that is inherently stable. Controlling the thrust
of all the four motors allows you to change pitch, roll, and yaw of the device. The following
diagram will be helpful:

Changing Thrust equally
on all Four Motors -
Altitude changes

Changing Thrust on one
motor - Roll/Pitch
changes

Changing Thrust on two
motor - Yaw changes

As you can see, controlling the relative speeds of the four motors allows you to control the
various ways the device can change position. To move forward, or really in any direction, we
would combine a change in roll/pitch with a change in thrust, so that instead of going up, the
device would move forward, as shown in the following diagram:

Applying Thrust to all
motors, but more on
one motor - Roll/Pitch
changes and the
platform moves forward

By Land, Sea, and Air

218

In a perfect world you might, knowing the components you used to build your quadcopter,
know exactly how much control signal to apply to get a certain change in the roll, pitch, yaw,
or altitude of your quadcopter. But there are simply too many aspects of your device that
can vary to know this well enough to rely on a fixed set of signals. Instead, this platform uses
a series of measurements of its position, pitch, roll, yaw, and altitude and then adjusts the
control signals to the motors to achieve the desired result. We call this feedback control. The
following diagram shows a feedback system:

Desired Altitude Change in
Motor Control

In a feedback system, the desired altitude is compared to the
actual altitude and the amount of difference then drives the
control signals to the motors to change the actual altitude,

Actual Altitude

+ _

As you can see, if your quadcopter is too low, the difference between the Desired Altitude
and the Actual Altitude will be positive, and the Motor Control will increase the voltage to
the motors, increasing the altitude. If the quadcopter is too high, the difference between
the Desired Altitude and the Actual Altitude will be negative, and the Motor Control will
decrease the voltage to the motors, decreasing the altitude. If the Desired Altitude and the
Actual Altitude are equal, then the difference between the two will be zero, and the Motor
Control will be held at its current value. Thus the system stabilizes even if the components
aren't perfect or if a wind comes along and blows the quadcopter up or down.

One application of the BeagleBone Black in this type of robotic project is to actually
coordinate the measurement and control of the quadcopter's pitch, roll, yaw, and altitude.
This can be done; however, it is a very complex task, and the details of its implementation
are beyond the scope of this book. There are some individuals in the open source software
and hardware space working on this problem. It may well be that in the near future solutions
may be available.

However, the BeagleBone Black can still be utilized in this type of robotic project by
introducing another embedded processor to do the low-level control and using the
BeagleBone black to manage the high-level tasks such as using the vision system of the
BeagleBone Black to identify a colored ball and then guiding the platform towards it. Another
option—as in the sail boat example—is to use the BeagleBone Black to coordinate GPS
tracking and long-range communications via ZigBee. This is the type of example that I'll cover
in this section.

Chapter 11

219

Prepare for lift off
The first thing you'll need is a quadcopter. There are three approaches to this:

ff Purchase an already assembled quadcopter

ff Purchase a kit and construct it yourself

ff Buy the parts and construct the quadcopter

In any case, to complete this section you'll need to choose one that uses the ArduPilot as
its flight control system. This flight system uses a flight version of the Arduino to do the low-
level feedback control we talked about earlier. The advantage to this system is that you can
talk to the flight control system via USB.

There are a number of assembled quadcopters available that use this flight controller. One
place to start is at http://www.ArduPilot.com. This will give you some information on
the flight controller, and the store has several already assembled quadcopters. If you are
thinking assembling a kit is the right approach, visit http://www.unmannedtechshop.
co.uk/multi-rotor.html or http://www.buildyourowndrone.co.uk/
ArduCopter-Kits-s/33.html as each of these not only sell assembled quadcopters but
kits as well.

If you'd like to assemble your own kit, there are several good tutorials about choosing all the
right parts and assembling your quadcopter. You can visit the following websites:

ff http://www.blog.tkjelectronics.dk/2012/03/quadcopters-how-to-
get-started

ff http://www.blog.oscarliang.net/build-a-quadcopter-beginners-
tutorial-1/

ff http://www.arducopter.co.uk/what-do-i-need.html

All of the mentioned websites have excellent instructions.

You might be tempted to purchase one of the very inexpensive quadcopters that are being
offered in the market. For this project you will need two key characteristics of the quadcopter:

ff The quadcopter flight control will need a USB port so that you can connect the
BeagleBone Black to it.

ff It will need to be large enough with enough thrust to carry the extra weight of the
BeagleBone Black; a battery and perhaps a webcam or other sensing devices will
also be required.

By Land, Sea, and Air

220

No matter which path you choose, another excellent source for information is available at
http://www.code.google.com/p/arducopter. This gives you some information on
how the ArduPilot works, and also talks about Mission Planner, the open source control
SW that will be used to control the ArduPilot on your quadcopter. This SW runs on the PC
and communicates to the quadcopter in one of the two ways; either directly through a USB
connection or through a radio connection. It is through the USB connection that you will
communicate between the BeagleBone Black and the ArduPilot.

Engage Thrusters
The first step in working in this space is to build your quadcopter and get it working with an
RC radio. When you allow the BeagleBone Black to control it later, you may still want to have
the RC radio handy, just in case things don't go quite as planned.

When the quadcopter is flying well based on your ability to control it using the RC radio, you
should then begin to use the ArduPilot in autopilot mode. To do this, download the SW from
http://www.ardupilot.com/downloads. You can then run the SW and you should see
the output that will be similar to the following screenshot:

Chapter 11

221

You can then connect your ArduPilot to the SW, and click on the CONNECT button at the
upper-right corner. You should then see the output that will be similar to the following
screenshot:

I will not walk you through how to use the SW to plan an automated flight plan; there is
plenty of documentation for that on the http://www.ArduPilot.com website. Notice
that in this configuration, you have not connected the GPS on the ArduPilot. What you want
to do is to hook up your BeagleBone Black to the ArduPilot on your quadcopter so that it can
control the flight of your quadcopter much as the Mission Planner does, but at a much lower
and more specific level. You will use the USB interface, just as the Mission Planner does.

To connect the two devices, you'll need to modify the Arduino code and create some
BeagleBone Black code. Then simply connect the USB interface of the BeagleBone Black
to the ArduPilot and you can issue yaw, pitch, and roll commands to the Arduino to guide
your quadcopter to wherever you want it to go. The Arduino will take care of keeping the
quadcopter stable. Here is an excellent tutorial on how to accomplish that, albeit using the
Raspberry Pi as the controller: http://www.oweng.myweb.port.ac.uk/build-your-
own-quadcopter-autopilot/.

Objective complete – mini debriefing
Now that you can fly your quadcopter using the BeagleBone Black, you can use the same
GPS and ZigBee capabilities mentioned in the last section to make your quadcopter semi-
autonomous.

By Land, Sea, and Air

222

Classified intel
Your quadcopter can act in complete autonomy as well. Adding a 3G modem to the project
allows you to track your quadcopter no matter where it might go, as long as it can receive a
cell signal. The following image shows such a modem:

This modem can be purchased on Amazon and at your cellular service provider. Once you
have purchased your modem, simply google instructions on how to configure it in Linux. An
example project that puts it all together can be found at http://www.skydrone.aero.

Using the BeagleBone Black in
submarine robots

You've explored the possibilities of walking robots, flying robots, and sailing robots. The
final frontier is robots that can actually maneuver under water. It only makes sense that you
can use the same techniques that you've mastered to explore the undersea world. In this
section, I'll detail how to use the capabilities that you have already developed in a Remote
Operated Vehicle (ROV) robot. There are, of course, some interesting challenges that come
with this type of project, so get ready to get wet.

Chapter 11

223

Prepare for lift off
As with the other projects in this chapter, there are possibilities to either buy an assembled
robot or assemble one by yourself. If you'd like to buy an assembled ROV, visit http://
www.openrov.com. This project, funded through Kickstarter, provides a complete package,
including electronics based on the BeagleBone Black. If you are looking to build your own,
there are several websites that document possible instructions for you to follow. There is one
available at http://www.dzlsevilgeniuslair.blogspot.dk/search/label/ROV.
Additionally, http://www.mbari.org/education/rov/ and http://www.engadget.
com/2007/09/04/build-your-own-underwater-rov-for-250/ show platforms to
which you can add your BeagleBone Black.

Engage thrusters
Whether you have purchased a platform or designed your own, the first step is to engage the
BeagleBone Black to control the motors. Fortunately, you should have a good idea of how
to do this as Chapter 5, Making the Unit Mobile – Controlling Wheeled Movement, covers
how to use a set of DC motor controllers to control DC motors. In this case, you will need to
control three or four motors, based on which kind of platform you build. Interestingly, the
problem of control is quite similar to the quadcopter control problem. If you use four motors,
the problem is almost exactly the same, except that instead of focusing on up and down, you
are focusing on moving the ROV forward.

There is one significant difference: the ROV is inherently more stable. In the quadcopter your
platform needed to hover in the air, a challenging control problem because the resistance
of air is so small and the platform responds very quickly to changes. Because the system is
so dynamic a microprocessor is needed to respond to the real-time measurements and to
individually control the four motors to achieve stable flight.

This is not the case underwater where our platform does not want to move dramatically;
in fact it takes a good bit of power to make the platform move through the water. You as
an operator can control the motors with enough precision to get the ROV moving in the
direction you want.

Another difference is that wireless communication is not available to you underwater, so you'll
be tethering your device and running controls from the surface to the ROV through wires. You'll
need to send control signals and video so that you can control the ROV in real time.

You have all the tools already at your disposal for this project. As already noted, from
Chapter 5, Making the Unit Mobile – Controlling Wheeled Movement, you know how to hook
up the DC motor controllers — you'll need one for each motor on your platform. Chapter 4,
Allowing the BeagleBone Black to See, shows how to set up a webcam, so you can see what
is around you. All of this can be controlled from a laptop at the surface connected via a LAN
cable and running vncserver.

By Land, Sea, and Air

224

Objective complete – mini debriefing
Creating the basic ROV platform should open the possibility of exploring the undersea world.
An ROV platform has some significant advantages. It is very difficult to lose (you have a cable
attached), and because the device tends to move quite slowly, the chances for catastrophic
collisions are significantly less than for many of the other projects. The biggest problem is
keeping everything dry!

Mission accomplished
Now you have access to a wide array of different robotics projects that can take you over land,
on the sea, or in the air. Be prepared for some challenges, and always plan on a bit of rework.

A challenge
Another possibility for an aerial project is a plane based on the ArduPilot and controlled by
the BeagleBone Black. Visit http://www.plane.ardupilot.com/ for information on
controlling a fixed-wing aircraft with the Ardupilot. It would be fairly straightforward to add
the BeagleBone Black to this configuration.

Index
A
Ångström 18
ArduPilot

about 221
URL, for documentation 221

B
basic programming constructs,

BeagleBone Black 47-54
BeagleBone Black

basic programming constructs 47-54
board, accessing remotely 26-33
board, inspecting 11
board, plugging 12-14
board, powering 12
checklist 10
connecting, to GPS device 176-188
connecting, to mobile platform 130-137
connecting, to USB sonar sensor 148-154
connecting, to wireless USB keyboard 167, 168
DC power, selecting for board 12
display, hooking up 15-18
files, creating 42, 43
files, editing 42, 43
files, saving 42, 43
graphical user interface, adding 22-25
keyboard, hooking up 15-18
LEDs, blinking 13
mobile platform, adding 103
mouse, hooking up 15-18
objectives 10
operating system, modifying 18-22
overview 9
Python programs, running on 44-47

USB camera, connecting to 86-89
used, for controlling mobile platform

programmatically 117-119
used, for creating Python programs 44-47
used, for flying robots 216-222
used, for sailing robots 208-215
using, for submarine robots 222-224

BeagleBone Black programming
checklist 36
features 35
objectives 35, 36
overview 35

board
accessing, remotely 26-33

C
C++

overview 54-58
cat filename command 41
clear command 41
colored objects

detecting, OpenCV library used 97-101
commands

interpreting, PocketSphinx used 73-80
cp filename1 filename2 command 41
Creative Labs 86

D
Dagu Rover 5 Tracked Chassis 104
DC motors 108
discus

about 196
installing 196

226

E
Emacs 42
eSpeak

about 70
used, for project response in robot voice 70-72

F
files

creating 42, 43
editing 42, 43
saving 42, 43

filesystem
navigating 36-41

G
general control structure

creating, for capabilities
communication 197-205

Global Positioning System. See GPS
GND connector 109
GPIO pins 108
GPS 176
GPS device

accessing, programmatically 188-193
BeagleBone Black, connecting to 176-188

GPS Receiver, for locating robot
checklist 176
features 175
objectives 175
overview 175

guvcview 86

I
ifconfig command 26
images

viewing 86-89

K
keyboard

used, for controlling project 169-174

L
legged platform

checklist 126-129
features 126
objectives 126
overview 125

legged robot 126
Linux commands

cat filename 41
clear 41
cp filename1 filename2 41
ll 41
ls 41
mkdir directoryname 41
mv filename1 filename2 41
rm filename 41
sudo 41

Linux program
creating, for controlling mobile platform 138-

141
ll command 38, 41
Logitech 86
ls command 41

M
Magician Chassis 104
male-male jumper wires 107
mkdir directoryname command 41
mobile platform

adding, to BeagleBone Black 103
BeagleBone Black, connecting to 130-137
checklist 104-107
controlling programmatically, BeagleBone Black

used 117-119
Linux program, creating for 138-141
motor controller, connecting to 108-116
objectives 104
programming, with Python 119-122
voice command, issuing 122, 123

mobile platform speed
controlling, motor controller used 107, 108

227

motor controller
about 129
connecting, to mobile platform 108-116
used, for controlling mobile platform

speed 107, 108
mv filename1 filename2 command 41

O
OpenCV

downloading 89-94
installing 89-96

OpenCV library
used, for detecting colored objects 97-101

OUTA connector 109
OUTB connector 109

P
PocketSphinx

about 73
used, for interpreting commands 73-80

Pololu
URL 106

Pololu #1372 Simple Motor Controller 18V7 106
Python

mobile platform, programming with 119-122
Python programs

creating, BeagleBone Black used 44-47
running, on BeagleBone Black 44-47

Q
quadcopter project 216
quadcopters 216

R
Remote Operated Vehicle (ROV) robot 222
rm filename command 41
Robot Operating System. See ROS
robots

flying, BeagleBone Black used 216-222
responding, to commands 80-83
sailing, BeagleBone Black used 208-215

ROS
about 206
installing 206

S
Secure Shell Hypterminal connection 27
sensors

checklist 146, 147
moving, servo used 154-158
overview 145

servo
used, for moving single sensor 154-158

servo controller
used, for connecting BeagleBone Black to mo-

bile platform 130-137
servo motors 127
setSpeed command 122
six degrees of freedom (DOF) 127
speech functionality

checklist 62, 63
eSpeak used, for project response in robot voice

70-72
features 61
HW, hooking up 64-69
objectives 62
overview 61
PocketSphinx used, for interpreting commands

73-80
robot, responding to commands 80-83

SSH 28
submarine robots

BeagleBone Black, using for 222-224
sudo command 41
system dynamics 195

T
Tightvncserver 29
tracked platform 104

U
Ubuntu 19, 36
USB camera

connecting, to BeagleBone Black 86-89
USB-ProxSonar-EZ 146
USB sonar sensor

about 146
BeagleBone Black, connecting to 148-154

228

V
VIN connector 109
VirtualBox 22
vision functionality

checklist 86
features 85
images, viewing 86-89
objectives 86
overview 85

voice command
issuing, for mobile platform 122, 123

voice commands
issuing, for making mobile platform truly mobile

142, 143
voice recognition program

modifying 122, 123

W
WinSCP 31
wireless communication, with robot

checklist 162-166
features 161
objectives 162
overview 161

wireless USB keyboard
BeagleBone Black, connecting to 167, 168

X
XBee 212

Thank you for buying
BeagleBone Robotic Projects

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Building a Home Security System
with BeagleBone
ISBN: 978-1-78355-960-2 Paperback: 121 pages

Build your own high-tech alarm system at a fraction
of the cost

1.	 Build your own state-of-the-art security system

2.	 Monitor your system from anywhere you can
receive e-mail

3.	 Add control of other systems such as sprinklers
and gates

Learning ROS for Robotics
Programming
ISBN: 978-1-78216-144-8 Paperback: 332 pages

A practical, instructive, and comprehensive guide
to introduce yourself to ROS, the top-notch, leading
robotics framework

1.	 Model your robot on a virtual world and learn
how to simulate it

2.	 Carry out state-of-the-art Computer Vision
tasks

3.	 Easy to follow, practical tutorials to program
your own robots

Please check www.PacktPub.com for information on our titles

Robot Framework Test
Automation
ISBN: 978-1-78328-303-3 Paperback: 98 pages

Create test suites and automated acceptance tests
from scratch

1.	 Create a Robot Framework test file and a test
suite

2.	 Identify and differentiate between different test
case writing styles

3.	 Full of easy-to-follow steps, to get you started
with Robot Framework

Instant LEGO MINDSTORMS EV3
ISBN: 978-1-84951-974-8 Paperback: 82 pages

Your guide to building and programming your
very own advanced robot using LEGO
MINDSTORMS EV3

1.	 Step-by-step instructions that will help you
to build and program your own robot

2.	 Utilize all the sensors in the EV3 kit

3.	 Write programs with all of the essential
programming commands

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with the BeagleBone Black
	Mission briefing
	The unveiling!
	Hooking up a keyboard, mouse, and display
	Changing the operating system
	Adding a graphical user interface
	Accessing the board remotely
	Mission accomplished
	A challenge

	Chapter 2: Programming the BeagleBone Black
	Mission briefing
	Basic Linux commands and navigating the filesystem
	Createing, editing, and saving files on the BeagleBone Black
	Creating and running Python programs on the BeagleBone Black
	Basic programming constructs on the BeagleBone Black
	Introduction to the C++ programming language
	Mission accomplished
	A challenge

	Chapter 3: Providing Speech
Input and Output
	Mission briefing
	Hooking up the HW to make and
input sound
	Using Espeak to allow your projects to respond in a robot voice
	Using PocketSphinx to interpret your commands
	Providing the capability to interpret
	your commands and have your robot initiate an action
	Mission accomplished
	A challenge

	Chapter 4: Allowing the BeagleBone Black
to See
	Mission briefing
	Connecting the USB camera to the BeagleBone Black and viewing the images
	Downloading and installing OpenCV – a full-featured vision library
	Using the vision library to detect colored objects
	Mission accomplished
	Challenges

	Chapter 5: Making the Unit
Mobile – Controlling Wheeled Movement
	Mission briefing
	Using a motor controller to control the speed of your platform
	Controlling your mobile platform programmatically using the BeagleBone Black
	Making your mobile platform truly mobile by issuing voice commands
	Mission accomplished
	A challenge

	Chapter 6: Making the Unit Very Mobile – Controlling Legged Movement
	Mission briefing
	Connecting the BeagleBone Black to the mobile platform using a servo controller
	Creating a program in Linux to control the mobile platform
	Making your mobile platform truly mobile by issuing voice commands
	Mission accomplished
	A challenge

	Chapter 7: Avoiding Obstacles Using Sensors
	Mission briefing
	Connecting the BeagleBone Black to a USB Sonar sensor
	Using a servo to move a single sensor
	Mission accomplished
	A challenge

	Chapter 8: Going Truly Mobile – Remote Control
of Your Robot
	Mission briefing
	Connecting the BeagleBone Black to a wireless USB keyboard
	Using the keyboard to control your project
	Mission accomplished
	A challenge

	Chapter 9: Using a GPS Receiver to Locate Your Robot
	Mission briefing
	Connecting the BeagleBone Black to a GPS device
	Accessing the GPS programmatically and determining how to move to a location
	Mission accomplished
	A challenge

	Chapter 10: System Dynamics
	Mission briefing
	Creating a general control structure so capabilities can communicate
	Mission accomplished
	A challenge

	Chapter 11: By Land, Sea, and Air
	Mission briefing
	Using the BeagleBone Black in robots that can sail
	Using the BeagleBone Black in robots that can fly
	Using the BeagleBone Black in submarine robots
	Mission accomplished
	A challenge

	Index

